Date: Mon, 12 Nov 2018 20:19:24 +0000 (UTC) From: Bernard Spil <brnrd@FreeBSD.org> To: ports-committers@freebsd.org, svn-ports-all@freebsd.org, svn-ports-head@freebsd.org Subject: svn commit: r484821 - in head/security/openssl: . files Message-ID: <201811122019.wACKJOmH040708@repo.freebsd.org>
next in thread | raw e-mail | index | archive | help
Author: brnrd Date: Mon Nov 12 20:19:23 2018 New Revision: 484821 URL: https://svnweb.freebsd.org/changeset/ports/484821 Log: security/openssl: Security update for CVE-2018-5407 MFH: 2018Q4 Security: 6f170cf2-e6b7-11e8-a9a8-b499baebfeaf Added: head/security/openssl/files/patch-CVE-2018-5407 (contents, props changed) Modified: head/security/openssl/Makefile Modified: head/security/openssl/Makefile ============================================================================== --- head/security/openssl/Makefile Mon Nov 12 20:18:10 2018 (r484820) +++ head/security/openssl/Makefile Mon Nov 12 20:19:23 2018 (r484821) @@ -3,7 +3,7 @@ PORTNAME= openssl PORTVERSION= 1.0.2p -PORTREVISION= 1 +PORTREVISION= 2 PORTEPOCH= 1 CATEGORIES= security devel MASTER_SITES= http://www.openssl.org/source/ \ @@ -18,7 +18,6 @@ LICENSE_FILE= ${WRKSRC}/LICENSE CONFLICTS_INSTALL= libressl-[0-9]* \ libressl-devel-[0-9]* \ - openssl-devel-[0-9]* \ openssl111-[0-9]* OPTIONS_DEFINE= DOCS MAN3 PADLOCK RFC3779 SHARED THREADS ZLIB Added: head/security/openssl/files/patch-CVE-2018-5407 ============================================================================== --- /dev/null 00:00:00 1970 (empty, because file is newly added) +++ head/security/openssl/files/patch-CVE-2018-5407 Mon Nov 12 20:19:23 2018 (r484821) @@ -0,0 +1,341 @@ +From b18162a7c9bbfb57112459a4d6631fa258fd8c0c Mon Sep 17 00:00:00 2001 +From: Billy Brumley <bbrumley@gmail.com> +Date: Thu, 8 Nov 2018 13:57:54 +0200 +Subject: [PATCH] CVE-2018-5407 fix: ECC ladder + +Reviewed-by: Matt Caswell <matt@openssl.org> +Reviewed-by: Paul Dale <paul.dale@oracle.com> +Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com> +(Merged from https://github.com/openssl/openssl/pull/7593) +--- CHANGES.orig 2018-08-14 13:01:02 UTC ++++ CHANGES +@@ -7,6 +7,21 @@ + https://github.com/openssl/openssl/commits/ and pick the appropriate + release branch. + ++ Changes between 1.0.2p and 1.0.2q [xx XXX xxxx] ++ ++ *) Microarchitecture timing vulnerability in ECC scalar multiplication ++ ++ OpenSSL ECC scalar multiplication, used in e.g. ECDSA and ECDH, has been ++ shown to be vulnerable to a microarchitecture timing side channel attack. ++ An attacker with sufficient access to mount local timing attacks during ++ ECDSA signature generation could recover the private key. ++ ++ This issue was reported to OpenSSL on 26th October 2018 by Alejandro ++ Cabrera Aldaya, Billy Brumley, Sohaib ul Hassan, Cesar Pereida Garcia and ++ Nicola Tuveri. ++ (CVE-2018-5407) ++ [Billy Brumley] ++ + Changes between 1.0.2o and 1.0.2p [14 Aug 2018] + + *) Client DoS due to large DH parameter + CHANGES | 13 +++ + crypto/bn/bn_lib.c | 32 ++++++ + crypto/ec/ec_mult.c | 246 ++++++++++++++++++++++++++++++++++++++++++++ + 3 files changed, 291 insertions(+) + +--- crypto/bn/bn_lib.c.orig 2018-08-14 12:49:04 UTC ++++ crypto/bn/bn_lib.c +@@ -889,6 +889,38 @@ void BN_consttime_swap(BN_ULONG conditio + a->top ^= t; + b->top ^= t; + ++ t = (a->neg ^ b->neg) & condition; ++ a->neg ^= t; ++ b->neg ^= t; ++ ++ /*- ++ * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention ++ * is actually to treat it as it's read-only data, and some (if not most) ++ * of it does reside in read-only segment. In other words observation of ++ * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal ++ * condition. It would either cause SEGV or effectively cause data ++ * corruption. ++ * ++ * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be ++ * preserved. ++ * ++ * BN_FLG_SECURE: must be preserved, because it determines how x->d was ++ * allocated and hence how to free it. ++ * ++ * BN_FLG_CONSTTIME: sufficient to mask and swap ++ * ++ * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on ++ * the data, so the d array may be padded with additional 0 values (i.e. ++ * top could be greater than the minimal value that it could be). We should ++ * be swapping it ++ */ ++ ++#define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP) ++ ++ t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition; ++ a->flags ^= t; ++ b->flags ^= t; ++ + #define BN_CONSTTIME_SWAP(ind) \ + do { \ + t = (a->d[ind] ^ b->d[ind]) & condition; \ +--- crypto/ec/ec_mult.c.orig 2018-08-14 12:48:57 UTC ++++ crypto/ec/ec_mult.c +@@ -310,6 +310,224 @@ static signed char *compute_wNAF(const B + return r; + } + ++#define EC_POINT_BN_set_flags(P, flags) do { \ ++ BN_set_flags(&(P)->X, (flags)); \ ++ BN_set_flags(&(P)->Y, (flags)); \ ++ BN_set_flags(&(P)->Z, (flags)); \ ++} while(0) ++ ++/*- ++ * This functions computes (in constant time) a point multiplication over the ++ * EC group. ++ * ++ * At a high level, it is Montgomery ladder with conditional swaps. ++ * ++ * It performs either a fixed scalar point multiplication ++ * (scalar * generator) ++ * when point is NULL, or a generic scalar point multiplication ++ * (scalar * point) ++ * when point is not NULL. ++ * ++ * scalar should be in the range [0,n) otherwise all constant time bets are off. ++ * ++ * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, ++ * which of course are not constant time themselves. ++ * ++ * The product is stored in r. ++ * ++ * Returns 1 on success, 0 otherwise. ++ */ ++static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, ++ const BIGNUM *scalar, const EC_POINT *point, ++ BN_CTX *ctx) ++{ ++ int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; ++ EC_POINT *s = NULL; ++ BIGNUM *k = NULL; ++ BIGNUM *lambda = NULL; ++ BIGNUM *cardinality = NULL; ++ BN_CTX *new_ctx = NULL; ++ int ret = 0; ++ ++ if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) ++ return 0; ++ ++ BN_CTX_start(ctx); ++ ++ s = EC_POINT_new(group); ++ if (s == NULL) ++ goto err; ++ ++ if (point == NULL) { ++ if (!EC_POINT_copy(s, group->generator)) ++ goto err; ++ } else { ++ if (!EC_POINT_copy(s, point)) ++ goto err; ++ } ++ ++ EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); ++ ++ cardinality = BN_CTX_get(ctx); ++ lambda = BN_CTX_get(ctx); ++ k = BN_CTX_get(ctx); ++ if (k == NULL || !BN_mul(cardinality, &group->order, &group->cofactor, ctx)) ++ goto err; ++ ++ /* ++ * Group cardinalities are often on a word boundary. ++ * So when we pad the scalar, some timing diff might ++ * pop if it needs to be expanded due to carries. ++ * So expand ahead of time. ++ */ ++ cardinality_bits = BN_num_bits(cardinality); ++ group_top = cardinality->top; ++ if ((bn_wexpand(k, group_top + 2) == NULL) ++ || (bn_wexpand(lambda, group_top + 2) == NULL)) ++ goto err; ++ ++ if (!BN_copy(k, scalar)) ++ goto err; ++ ++ BN_set_flags(k, BN_FLG_CONSTTIME); ++ ++ if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { ++ /*- ++ * this is an unusual input, and we don't guarantee ++ * constant-timeness ++ */ ++ if (!BN_nnmod(k, k, cardinality, ctx)) ++ goto err; ++ } ++ ++ if (!BN_add(lambda, k, cardinality)) ++ goto err; ++ BN_set_flags(lambda, BN_FLG_CONSTTIME); ++ if (!BN_add(k, lambda, cardinality)) ++ goto err; ++ /* ++ * lambda := scalar + cardinality ++ * k := scalar + 2*cardinality ++ */ ++ kbit = BN_is_bit_set(lambda, cardinality_bits); ++ BN_consttime_swap(kbit, k, lambda, group_top + 2); ++ ++ group_top = group->field.top; ++ if ((bn_wexpand(&s->X, group_top) == NULL) ++ || (bn_wexpand(&s->Y, group_top) == NULL) ++ || (bn_wexpand(&s->Z, group_top) == NULL) ++ || (bn_wexpand(&r->X, group_top) == NULL) ++ || (bn_wexpand(&r->Y, group_top) == NULL) ++ || (bn_wexpand(&r->Z, group_top) == NULL)) ++ goto err; ++ ++ /* top bit is a 1, in a fixed pos */ ++ if (!EC_POINT_copy(r, s)) ++ goto err; ++ ++ EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); ++ ++ if (!EC_POINT_dbl(group, s, s, ctx)) ++ goto err; ++ ++ pbit = 0; ++ ++#define EC_POINT_CSWAP(c, a, b, w, t) do { \ ++ BN_consttime_swap(c, &(a)->X, &(b)->X, w); \ ++ BN_consttime_swap(c, &(a)->Y, &(b)->Y, w); \ ++ BN_consttime_swap(c, &(a)->Z, &(b)->Z, w); \ ++ t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ ++ (a)->Z_is_one ^= (t); \ ++ (b)->Z_is_one ^= (t); \ ++} while(0) ++ ++ /*- ++ * The ladder step, with branches, is ++ * ++ * k[i] == 0: S = add(R, S), R = dbl(R) ++ * k[i] == 1: R = add(S, R), S = dbl(S) ++ * ++ * Swapping R, S conditionally on k[i] leaves you with state ++ * ++ * k[i] == 0: T, U = R, S ++ * k[i] == 1: T, U = S, R ++ * ++ * Then perform the ECC ops. ++ * ++ * U = add(T, U) ++ * T = dbl(T) ++ * ++ * Which leaves you with state ++ * ++ * k[i] == 0: U = add(R, S), T = dbl(R) ++ * k[i] == 1: U = add(S, R), T = dbl(S) ++ * ++ * Swapping T, U conditionally on k[i] leaves you with state ++ * ++ * k[i] == 0: R, S = T, U ++ * k[i] == 1: R, S = U, T ++ * ++ * Which leaves you with state ++ * ++ * k[i] == 0: S = add(R, S), R = dbl(R) ++ * k[i] == 1: R = add(S, R), S = dbl(S) ++ * ++ * So we get the same logic, but instead of a branch it's a ++ * conditional swap, followed by ECC ops, then another conditional swap. ++ * ++ * Optimization: The end of iteration i and start of i-1 looks like ++ * ++ * ... ++ * CSWAP(k[i], R, S) ++ * ECC ++ * CSWAP(k[i], R, S) ++ * (next iteration) ++ * CSWAP(k[i-1], R, S) ++ * ECC ++ * CSWAP(k[i-1], R, S) ++ * ... ++ * ++ * So instead of two contiguous swaps, you can merge the condition ++ * bits and do a single swap. ++ * ++ * k[i] k[i-1] Outcome ++ * 0 0 No Swap ++ * 0 1 Swap ++ * 1 0 Swap ++ * 1 1 No Swap ++ * ++ * This is XOR. pbit tracks the previous bit of k. ++ */ ++ ++ for (i = cardinality_bits - 1; i >= 0; i--) { ++ kbit = BN_is_bit_set(k, i) ^ pbit; ++ EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); ++ if (!EC_POINT_add(group, s, r, s, ctx)) ++ goto err; ++ if (!EC_POINT_dbl(group, r, r, ctx)) ++ goto err; ++ /* ++ * pbit logic merges this cswap with that of the ++ * next iteration ++ */ ++ pbit ^= kbit; ++ } ++ /* one final cswap to move the right value into r */ ++ EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); ++#undef EC_POINT_CSWAP ++ ++ ret = 1; ++ ++ err: ++ EC_POINT_free(s); ++ BN_CTX_end(ctx); ++ BN_CTX_free(new_ctx); ++ ++ return ret; ++} ++ ++#undef EC_POINT_BN_set_flags ++ + /* + * TODO: table should be optimised for the wNAF-based implementation, + * sometimes smaller windows will give better performance (thus the +@@ -369,6 +587,34 @@ int ec_wNAF_mul(const EC_GROUP *group, E + return EC_POINT_set_to_infinity(group, r); + } + ++ if (!BN_is_zero(&group->order) && !BN_is_zero(&group->cofactor)) { ++ /*- ++ * Handle the common cases where the scalar is secret, enforcing a constant ++ * time scalar multiplication algorithm. ++ */ ++ if ((scalar != NULL) && (num == 0)) { ++ /*- ++ * In this case we want to compute scalar * GeneratorPoint: this ++ * codepath is reached most prominently by (ephemeral) key generation ++ * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH ++ * keygen/first half), where the scalar is always secret. This is why ++ * we ignore if BN_FLG_CONSTTIME is actually set and we always call the ++ * constant time version. ++ */ ++ return ec_mul_consttime(group, r, scalar, NULL, ctx); ++ } ++ if ((scalar == NULL) && (num == 1)) { ++ /*- ++ * In this case we want to compute scalar * GenericPoint: this codepath ++ * is reached most prominently by the second half of ECDH, where the ++ * secret scalar is multiplied by the peer's public point. To protect ++ * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and ++ * we always call the constant time version. ++ */ ++ return ec_mul_consttime(group, r, scalars[0], points[0], ctx); ++ } ++ } ++ + for (i = 0; i < num; i++) { + if (group->meth != points[i]->meth) { + ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201811122019.wACKJOmH040708>