Skip site navigation (1)Skip section navigation (2)
Date:      Sat, 15 Oct 2011 05:23:28 +0000 (UTC)
From:      David Schultz <das@FreeBSD.org>
To:        src-committers@freebsd.org, svn-src-all@freebsd.org, svn-src-head@freebsd.org
Subject:   svn commit: r226376 - head/lib/msun/src
Message-ID:  <201110150523.p9F5NSGP096720@svn.freebsd.org>

next in thread | raw e-mail | index | archive | help
Author: das
Date: Sat Oct 15 05:23:28 2011
New Revision: 226376
URL: http://svn.freebsd.org/changeset/base/226376

Log:
  Various changes to improve the accuracy and speed of log{2,10}{,f}.
  - Rename __kernel_log() to k_log1p().
  - Move some of the work that was previously done in the kernel log into
    the callers.  This enables further refactoring to improve accuracy or
    speed, although I don't recall the details.
  - Use extra precision when adding the final scaling term, which improves
    accuracy.
  - Describe and work around compiler problems that break some of the
    multiprecision calculations.
  
  A fix for a small bug is also included:
  - Add a special case for log*(1).  This is needed to ensure that log*(1) == +0
    instead of -0, even when the rounding mode is FE_DOWNWARD.
  
  Submitted by:	bde

Modified:
  head/lib/msun/src/e_log10.c
  head/lib/msun/src/e_log10f.c
  head/lib/msun/src/e_log2.c
  head/lib/msun/src/e_log2f.c
  head/lib/msun/src/k_log.h
  head/lib/msun/src/k_logf.h

Modified: head/lib/msun/src/e_log10.c
==============================================================================
--- head/lib/msun/src/e_log10.c	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/e_log10.c	Sat Oct 15 05:23:28 2011	(r226376)
@@ -17,6 +17,9 @@ __FBSDID("$FreeBSD$");
 /*
  * Return the base 10 logarithm of x.  See e_log.c and k_log.h for most
  * comments.
+ *
+ *    log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2)
+ * in not-quite-routine extra precision.
  */
 
 #include "math.h"
@@ -35,7 +38,7 @@ static const double zero   =  0.0;
 double
 __ieee754_log10(double x)
 {
-	double f,hi,lo,y,z;
+	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2;
 	int32_t i,k,hx;
 	u_int32_t lx;
 
@@ -50,16 +53,35 @@ __ieee754_log10(double x)
 	    GET_HIGH_WORD(hx,x);
 	}
 	if (hx >= 0x7ff00000) return x+x;
+	if (hx == 0x3ff00000 && lx == 0)
+	    return zero;			/* log(1) = +0 */
 	k += (hx>>20)-1023;
 	hx &= 0x000fffff;
 	i = (hx+0x95f64)&0x100000;
 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
 	k += (i>>20);
 	y = (double)k;
-	f = __kernel_log(x);
-	hi = x = x - 1;
+	f = x - 1.0;
+	hfsq = 0.5*f*f;
+	r = k_log1p(f);
+
+	/* See e_log2.c for most details. */
+	hi = f - hfsq;
 	SET_LOW_WORD(hi,0);
-	lo = x - hi;
-	z = y*log10_2lo + (x+f)*ivln10lo + (lo+f)*ivln10hi + hi*ivln10hi;
-	return  z+y*log10_2hi;
+	lo = (f - hi) - hfsq + r;
+	val_hi = hi*ivln10hi;
+	y2 = y*log10_2hi;
+	val_lo = y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
+
+	/*
+	 * Extra precision in for adding y*log10_2hi is not strictly needed
+	 * since there is no very large cancellation near x = sqrt(2) or
+	 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
+	 * with some parallelism and it reduces the error for many args.
+	 */
+	w = y2 + val_hi;
+	val_lo += (y2 - w) + val_hi;
+	val_hi = w;
+
+	return val_lo + val_hi;
 }

Modified: head/lib/msun/src/e_log10f.c
==============================================================================
--- head/lib/msun/src/e_log10f.c	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/e_log10f.c	Sat Oct 15 05:23:28 2011	(r226376)
@@ -32,7 +32,7 @@ static const float zero   =  0.0;
 float
 __ieee754_log10f(float x)
 {
-	float f,hi,lo,y,z;
+	float f,hfsq,hi,lo,r,y,y2;
 	int32_t i,k,hx;
 
 	GET_FLOAT_WORD(hx,x);
@@ -46,17 +46,26 @@ __ieee754_log10f(float x)
 	    GET_FLOAT_WORD(hx,x);
 	}
 	if (hx >= 0x7f800000) return x+x;
+	if (hx == 0x3f800000)
+	    return zero;			/* log(1) = +0 */
 	k += (hx>>23)-127;
 	hx &= 0x007fffff;
 	i = (hx+(0x4afb0d))&0x800000;
 	SET_FLOAT_WORD(x,hx|(i^0x3f800000));	/* normalize x or x/2 */
 	k += (i>>23);
 	y = (float)k;
-	f = __kernel_logf(x);
-	x = x - (float)1.0;
-	GET_FLOAT_WORD(hx,x);
+	f = x - (float)1.0;
+	hfsq = (float)0.5*f*f;
+	r = k_log1pf(f);
+
+	/* See e_log2f.c and e_log2.c for details. */
+	if (sizeof(float_t) > sizeof(float))
+		return (r - hfsq + f) * ((float_t)ivln10lo + ivln10hi) +
+		    y * ((float_t)log10_2lo + log10_2hi);
+	hi = f - hfsq;
+	GET_FLOAT_WORD(hx,hi);
 	SET_FLOAT_WORD(hi,hx&0xfffff000);
-	lo = x - hi;
-	z = y*log10_2lo + (x+f)*ivln10lo + (lo+f)*ivln10hi + hi*ivln10hi;
-	return  z+y*log10_2hi;
+	lo = (f - hi) - hfsq + r;
+	return y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi +
+	    y*log10_2hi;
 }

Modified: head/lib/msun/src/e_log2.c
==============================================================================
--- head/lib/msun/src/e_log2.c	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/e_log2.c	Sat Oct 15 05:23:28 2011	(r226376)
@@ -17,6 +17,11 @@ __FBSDID("$FreeBSD$");
 /*
  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
  * comments.
+ *
+ * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
+ * then does the combining and scaling steps
+ *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
+ * in not-quite-routine extra precision.
  */
 
 #include "math.h"
@@ -33,7 +38,7 @@ static const double zero   =  0.0;
 double
 __ieee754_log2(double x)
 {
-	double f,hi,lo;
+	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
 	int32_t i,k,hx;
 	u_int32_t lx;
 
@@ -48,14 +53,58 @@ __ieee754_log2(double x)
 	    GET_HIGH_WORD(hx,x);
 	}
 	if (hx >= 0x7ff00000) return x+x;
+	if (hx == 0x3ff00000 && lx == 0)
+	    return zero;			/* log(1) = +0 */
 	k += (hx>>20)-1023;
 	hx &= 0x000fffff;
 	i = (hx+0x95f64)&0x100000;
 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
 	k += (i>>20);
-	f = __kernel_log(x);
-	hi = x = x - 1;
+	y = (double)k;
+	f = x - 1.0;
+	hfsq = 0.5*f*f;
+	r = k_log1p(f);
+
+	/*
+	 * f-hfsq must (for args near 1) be evaluated in extra precision
+	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
+	 * This is fairly efficient since f-hfsq only depends on f, so can
+	 * be evaluated in parallel with R.  Not combining hfsq with R also
+	 * keeps R small (though not as small as a true `lo' term would be),
+	 * so that extra precision is not needed for terms involving R.
+	 *
+	 * Compiler bugs involving extra precision used to break Dekker's
+	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
+	 * or the multi-precision calculations were avoided when double_t
+	 * has extra precision.  These problems are now automatically
+	 * avoided as a side effect of the optimization of combining the
+	 * Dekker splitting step with the clear-low-bits step.
+	 *
+	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
+	 * precision to avoid a very large cancellation when x is very near
+	 * these values.  Unlike the above cancellations, this problem is
+	 * specific to base 2.  It is strange that adding +-1 is so much
+	 * harder than adding +-ln2 or +-log10_2.
+	 *
+	 * This uses Dekker's theorem to normalize y+val_hi, so the
+	 * compiler bugs are back in some configurations, sigh.  And I
+	 * don't want to used double_t to avoid them, since that gives a
+	 * pessimization and the support for avoiding the pessimization
+	 * is not yet available.
+	 *
+	 * The multi-precision calculations for the multiplications are
+	 * routine.
+	 */
+	hi = f - hfsq;
 	SET_LOW_WORD(hi,0);
-	lo = x - hi;
-	return (x+f)*ivln2lo + (lo+f)*ivln2hi + hi*ivln2hi + k;
+	lo = (f - hi) - hfsq + r;
+	val_hi = hi*ivln2hi;
+	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
+
+	/* spadd(val_hi, val_lo, y), except for not using double_t: */
+	w = y + val_hi;
+	val_lo += (y - w) + val_hi;
+	val_hi = w;
+
+	return val_lo + val_hi;
 }

Modified: head/lib/msun/src/e_log2f.c
==============================================================================
--- head/lib/msun/src/e_log2f.c	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/e_log2f.c	Sat Oct 15 05:23:28 2011	(r226376)
@@ -30,7 +30,7 @@ static const float zero   =  0.0;
 float
 __ieee754_log2f(float x)
 {
-	float f,hi,lo;
+	float f,hfsq,hi,lo,r,y;
 	int32_t i,k,hx;
 
 	GET_FLOAT_WORD(hx,x);
@@ -44,15 +44,38 @@ __ieee754_log2f(float x)
 	    GET_FLOAT_WORD(hx,x);
 	}
 	if (hx >= 0x7f800000) return x+x;
+	if (hx == 0x3f800000)
+	    return zero;			/* log(1) = +0 */
 	k += (hx>>23)-127;
 	hx &= 0x007fffff;
 	i = (hx+(0x4afb0d))&0x800000;
 	SET_FLOAT_WORD(x,hx|(i^0x3f800000));	/* normalize x or x/2 */
 	k += (i>>23);
-	f = __kernel_logf(x);
-	x = x - (float)1.0;
-	GET_FLOAT_WORD(hx,x);
+	y = (float)k;
+	f = x - (float)1.0;
+	hfsq = (float)0.5*f*f;
+	r = k_log1pf(f);
+
+	/*
+	 * We no longer need to avoid falling into the multi-precision
+	 * calculations due to compiler bugs breaking Dekker's theorem.
+	 * Keep avoiding this as an optimization.  See e_log2.c for more
+	 * details (some details are here only because the optimization
+	 * is not yet available in double precision).
+	 *
+	 * Another compiler bug turned up.  With gcc on i386,
+	 * (ivln2lo + ivln2hi) would be evaluated in float precision
+	 * despite runtime evaluations using double precision.  So we
+	 * must cast one of its terms to float_t.  This makes the whole
+	 * expression have type float_t, so return is forced to waste
+	 * time clobbering its extra precision.
+	 */
+	if (sizeof(float_t) > sizeof(float))
+		return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y;
+
+	hi = f - hfsq;
+	GET_FLOAT_WORD(hx,hi);
 	SET_FLOAT_WORD(hi,hx&0xfffff000);
-	lo = x - hi;
-	return (x+f)*ivln2lo + (lo+f)*ivln2hi + hi*ivln2hi + k;
+	lo = (f - hi) - hfsq + r;
+	return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + y;
 }

Modified: head/lib/msun/src/k_log.h
==============================================================================
--- head/lib/msun/src/k_log.h	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/k_log.h	Sat Oct 15 05:23:28 2011	(r226376)
@@ -14,8 +14,9 @@
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
-/* __kernel_log(x)
- * Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)].
+/*
+ * k_log1p(f):
+ * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
  *
  * The following describes the overall strategy for computing
  * logarithms in base e.  The argument reduction and adding the final
@@ -80,37 +81,20 @@ Lg6 = 1.531383769920937332e-01,  /* 3FC3
 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
 /*
- * We always inline __kernel_log(), since doing so produces a
+ * We always inline k_log1p(), since doing so produces a
  * substantial performance improvement (~40% on amd64).
  */
 static inline double
-__kernel_log(double x)
+k_log1p(double f)
 {
-	double hfsq,f,s,z,R,w,t1,t2;
-	int32_t hx,i,j;
-	u_int32_t lx;
-
-	EXTRACT_WORDS(hx,lx,x);
+	double hfsq,s,z,R,w,t1,t2;
 
-	f = x-1.0;
-	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
-	    if(f==0.0) return 0.0;
-	    return f*f*(0.33333333333333333*f-0.5);
-	}
- 	s = f/(2.0+f); 
+ 	s = f/(2.0+f);
 	z = s*s;
-	hx &= 0x000fffff;
-	i = hx-0x6147a;
 	w = z*z;
-	j = 0x6b851-hx;
-	t1= w*(Lg2+w*(Lg4+w*Lg6)); 
-	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
-	i |= j;
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
 	R = t2+t1;
-	if (i>0) {
-	    hfsq=0.5*f*f;
-	    return s*(hfsq+R) - hfsq;
-	} else {
-	    return s*(R-f);
-	}
+	hfsq=0.5*f*f;
+	return s*(hfsq+R);
 }

Modified: head/lib/msun/src/k_logf.h
==============================================================================
--- head/lib/msun/src/k_logf.h	Sat Oct 15 05:00:56 2011	(r226375)
+++ head/lib/msun/src/k_logf.h	Sat Oct 15 05:23:28 2011	(r226376)
@@ -13,7 +13,7 @@
 __FBSDID("$FreeBSD$");
 
 /*
- * float version of __kernel_log(x). See k_log.c for details.
+ * Float version of k_log.h.  See the latter for most comments.
  */
 
 static const float
@@ -24,32 +24,16 @@ Lg3 =      0x91e9ee.0p-25,	/* 0.28498786
 Lg4 =      0xf89e26.0p-26;	/* 0.24279078841 */
 
 static inline float
-__kernel_logf(float x)
+k_log1pf(float f)
 {
-	float hfsq,f,s,z,R,w,t1,t2;
-	int32_t ix,i,j;
+	float hfsq,s,z,R,w,t1,t2;
 
-	GET_FLOAT_WORD(ix,x);
-
-	f = x-(float)1.0;
-	if((0x007fffff&(0x8000+ix))<0xc000) {	/* -2**-9 <= f < 2**-9 */
-	    if(f==0.0f) return 0.0f;
-	    return f*f*((float)0.33333333333333333*f-(float)0.5);
-	}
  	s = f/((float)2.0+f);
 	z = s*s;
-	ix &= 0x007fffff;
-	i = ix-(0x6147a<<3);
 	w = z*z;
-	j = (0x6b851<<3)-ix;
 	t1= w*(Lg2+w*Lg4);
 	t2= z*(Lg1+w*Lg3);
-	i |= j;
 	R = t2+t1;
-	if(i>0) {
-	    hfsq=(float)0.5*f*f;
-	    return s*(hfsq+R) - hfsq;
-	} else {
-	    return s*(R-f);
-	}
+	hfsq=(float)0.5*f*f;
+	return s*(hfsq+R);
 }



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201110150523.p9F5NSGP096720>