Skip site navigation (1)Skip section navigation (2)
Date:      Wed, 11 Jul 2018 12:12:50 +0000 (UTC)
From:      Mark Johnston <markj@FreeBSD.org>
To:        src-committers@freebsd.org, svn-src-all@freebsd.org, svn-src-stable@freebsd.org, svn-src-stable-11@freebsd.org
Subject:   svn commit: r336196 - stable/11/lib/msun/src
Message-ID:  <201807111212.w6BCCox6074366@repo.freebsd.org>

next in thread | raw e-mail | index | archive | help
Author: markj
Date: Wed Jul 11 12:12:49 2018
New Revision: 336196
URL: https://svnweb.freebsd.org/changeset/base/336196

Log:
  MFC r336089:
  Fix whitespace issues in bessel function routines.
  
  PR:	229423

Modified:
  stable/11/lib/msun/src/e_j0.c
  stable/11/lib/msun/src/e_j1.c
  stable/11/lib/msun/src/e_j1f.c
  stable/11/lib/msun/src/e_jn.c
Directory Properties:
  stable/11/   (props changed)

Modified: stable/11/lib/msun/src/e_j0.c
==============================================================================
--- stable/11/lib/msun/src/e_j0.c	Wed Jul 11 09:41:50 2018	(r336195)
+++ stable/11/lib/msun/src/e_j0.c	Wed Jul 11 12:12:49 2018	(r336196)
@@ -1,4 +1,3 @@
-
 /* @(#)e_j0.c 1.3 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -33,20 +32,20 @@ __FBSDID("$FreeBSD$");
  * 	   (To avoid cancellation, use
  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  * 	    to compute the worse one.)
- *	   
+ *
  *	3 Special cases
  *		j0(nan)= nan
  *		j0(0) = 1
  *		j0(inf) = 0
- *		
+ *
  * Method -- y0(x):
  *	1. For x<2.
- *	   Since 
+ *	   Since
  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
  *	   We use the following function to approximate y0,
  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
- *	   where 
+ *	   where
  *		U(z) = u00 + u01*z + ... + u06*z^6
  *		V(z) = 1  + v01*z + ... + v04*z^4
  *	   with absolute approximation error bounded by 2**-72.
@@ -71,7 +70,7 @@ huge 	= 1e300,
 one	= 1.0,
 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
- 		/* R0/S0 on [0, 2.00] */
+/* R0/S0 on [0, 2.00] */
 R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
 R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
 R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
@@ -157,7 +156,7 @@ __ieee754_y0(double x)
 	 * y0(Inf) = 0.
 	 * y0(-Inf) = NaN and raise invalid exception.
 	 */
-	if(ix>=0x7ff00000) return vone/(x+x*x); 
+	if(ix>=0x7ff00000) return vone/(x+x*x);
 	/* y0(+-0) = -inf and raise divide-by-zero exception. */
 	if((ix|lx)==0) return -one/vzero;
 	/* y0(x<0) = NaN and raise invalid exception. */
@@ -293,7 +292,7 @@ pzero(double x)
 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
 	return one+ r/s;
 }
-		
+
 
 /* For x >= 8, the asymptotic expansions of qzero is
  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.

Modified: stable/11/lib/msun/src/e_j1.c
==============================================================================
--- stable/11/lib/msun/src/e_j1.c	Wed Jul 11 09:41:50 2018	(r336195)
+++ stable/11/lib/msun/src/e_j1.c	Wed Jul 11 12:12:49 2018	(r336196)
@@ -1,4 +1,3 @@
-
 /* @(#)e_j1.c 1.3 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -34,16 +33,16 @@ __FBSDID("$FreeBSD$");
  * 	   (To avoid cancellation, use
  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  * 	    to compute the worse one.)
- *	   
+ *
  *	3 Special cases
  *		j1(nan)= nan
  *		j1(0) = 0
  *		j1(inf) = 0
- *		
+ *
  * Method -- y1(x):
- *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN 
+ *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
  *	2. For x<2.
- *	   Since 
+ *	   Since
  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
  *	   We use the following function to approximate y1,
@@ -154,7 +153,7 @@ __ieee754_y1(double x)
 	 * y1(Inf) = 0.
 	 * y1(-Inf) = NaN and raise invalid exception.
 	 */
-	if(ix>=0x7ff00000) return  vone/(x+x*x); 
+	if(ix>=0x7ff00000) return  vone/(x+x*x);
 	/* y1(+-0) = -inf and raise divide-by-zero exception. */
         if((ix|lx)==0) return -one/vzero;
 	/* y1(x<0) = NaN and raise invalid exception. */
@@ -186,10 +185,10 @@ __ieee754_y1(double x)
                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
                 }
                 return z;
-        } 
+        }
         if(ix<=0x3c900000) {    /* x < 2**-54 */
             return(-tpi/x);
-        } 
+        }
         z = x*x;
         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
@@ -287,7 +286,7 @@ pone(double x)
         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
         return one+ r/s;
 }
-		
+
 
 /* For x >= 8, the asymptotic expansions of qone is
  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.

Modified: stable/11/lib/msun/src/e_j1f.c
==============================================================================
--- stable/11/lib/msun/src/e_j1f.c	Wed Jul 11 09:41:50 2018	(r336195)
+++ stable/11/lib/msun/src/e_j1f.c	Wed Jul 11 12:12:49 2018	(r336196)
@@ -32,7 +32,7 @@ huge    = 1e30,
 one	= 1.0,
 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
-	/* R0/S0 on [0,2] */
+/* R0/S0 on [0,2] */
 r00  = -6.2500000000e-02, /* 0xbd800000 */
 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
 r02  = -1.5995563444e-05, /* 0xb7862e36 */

Modified: stable/11/lib/msun/src/e_jn.c
==============================================================================
--- stable/11/lib/msun/src/e_jn.c	Wed Jul 11 09:41:50 2018	(r336195)
+++ stable/11/lib/msun/src/e_jn.c	Wed Jul 11 12:12:49 2018	(r336196)
@@ -1,4 +1,3 @@
-
 /* @(#)e_jn.c 1.4 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -18,7 +17,7 @@ __FBSDID("$FreeBSD$");
  * __ieee754_jn(n, x), __ieee754_yn(n, x)
  * floating point Bessel's function of the 1st and 2nd kind
  * of order n
- *          
+ *
  * Special cases:
  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
@@ -37,7 +36,6 @@ __FBSDID("$FreeBSD$");
  *	yn(n,x) is similar in all respects, except
  *	that forward recursion is used for all
  *	values of n>1.
- *	
  */
 
 #include "math.h"
@@ -66,7 +64,7 @@ __ieee754_jn(int n, double x)
 	ix = 0x7fffffff&hx;
     /* if J(n,NaN) is NaN */
 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
-	if(n<0){		
+	if(n<0){
 		n = -n;
 		x = -x;
 		hx ^= 0x80000000;
@@ -77,14 +75,14 @@ __ieee754_jn(int n, double x)
 	x = fabs(x);
 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
 	    b = zero;
-	else if((double)n<=x) {   
+	else if((double)n<=x) {
 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
 	    if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2) 
+    /* (x >> n**2)
      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *	    Let s=sin(x), c=cos(x), 
-     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *	    Let s=sin(x), c=cos(x),
+     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
      *
      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
      *		----------------------------------
@@ -100,7 +98,7 @@ __ieee754_jn(int n, double x)
 		    case 3: temp =  cos(x)-sin(x); break;
 		}
 		b = invsqrtpi*temp/sqrt(x);
-	    } else {	
+	    } else {
 	        a = __ieee754_j0(x);
 	        b = __ieee754_j1(x);
 	        for(i=1;i<n;i++){
@@ -111,7 +109,7 @@ __ieee754_jn(int n, double x)
 	    }
 	} else {
 	    if(ix<0x3e100000) {	/* x < 2**-29 */
-    /* x is tiny, return the first Taylor expansion of J(n,x) 
+    /* x is tiny, return the first Taylor expansion of J(n,x)
      * J(n,x) = 1/n!*(x/2)^n  - ...
      */
 		if(n>33)	/* underflow */
@@ -126,14 +124,14 @@ __ieee754_jn(int n, double x)
 		}
 	    } else {
 		/* use backward recurrence */
-		/* 			x      x^2      x^2       
+		/* 			x      x^2      x^2
 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 		 *			2n  - 2(n+1) - 2(n+2)
 		 *
-		 * 			1      1        1       
+		 * 			1      1        1
 		 *  (for large x)   =  ----  ------   ------   .....
 		 *			2n   2(n+1)   2(n+2)
-		 *			-- - ------ - ------ - 
+		 *			-- - ------ - ------ -
 		 *			 x     x         x
 		 *
 		 * Let w = 2n/x and h=2/x, then the above quotient
@@ -149,9 +147,9 @@ __ieee754_jn(int n, double x)
 		 * To determine how many terms needed, let
 		 * Q(0) = w, Q(1) = w(w+h) - 1,
 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-		 * When Q(k) > 1e4	good for single 
-		 * When Q(k) > 1e9	good for double 
-		 * When Q(k) > 1e17	good for quadruple 
+		 * When Q(k) > 1e4	good for single
+		 * When Q(k) > 1e9	good for double
+		 * When Q(k) > 1e17	good for quadruple
 		 */
 	    /* determine k */
 		double t,v;
@@ -237,11 +235,11 @@ __ieee754_yn(int n, double x)
 	if(n==1) return(sign*__ieee754_y1(x));
 	if(ix==0x7ff00000) return zero;
 	if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2) 
+    /* (x >> n**2)
      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *	    Let s=sin(x), c=cos(x), 
-     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *	    Let s=sin(x), c=cos(x),
+     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
      *
      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
      *		----------------------------------



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201807111212.w6BCCox6074366>