Skip site navigation (1)Skip section navigation (2)
Date:      Thu, 09 Oct 2008 20:16:58 -0400
From:      Michael Butler <imb@protected-networks.net>
To:        FreeBSD Stable <freebsd-stable@freebsd.org>
Subject:   Re: sidetrack [was Re: 'at now' not working as expected]
Message-ID:  <48EE9EFA.3080009@protected-networks.net>
In-Reply-To: <48EE9D0E.8000002@protected-networks.net>
References:  <884679.22561.qm@web110112.mail.gq1.yahoo.com>	<48E75BB7.2060206@madpilot.net>	<e7db6d980810081817g6673b593pf9bb7e940562a340@mail.gmail.com>	<20081009145337.P16723@sola.nimnet.asn.au>	<48EDE8DC.8030108@webzone.net.au>	<e7db6d980810091618j12731413ladd7e656e07eb17c@mail.gmail.com>	<200810092322.m99NMD3l043255@apollo.backplane.com> <48EE9D0E.8000002@protected-networks.net>

next in thread | previous in thread | raw e-mail | index | archive | help
I wrote:
> The attached program (not mine - credits in the header) does this
> effectively given your current position as input,

Inserted as text since it got stripped last time ..

> ------------------------------------------------------------------------

/*

SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
             the length of the day at any date and latitude

Written as DAYLEN.C, 1989-08-16

Modified to SUNRISET.C, 1992-12-01

(c) Paul Schlyter, 1989, 1992

This program may be used by anyone for any purpose, iff:
   1. it is not being sold for profit
   2. this notice is not removed

*/

#include <stdio.h>
#include <math.h>

/* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
/* (which is equal to 1999 Dec 31, 0h UT) */

#define days_since_2000_Jan_0(y,m,d) \
    (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)

/* Some conversion factors between radians and degrees */

#ifndef PI
#define PI        3.1415926535897932384
#endif

#define RADEG     ( 180.0 / PI )
#define DEGRAD    ( PI / 180.0 )

/* The trigonometric functions in degrees */

#define sind(x)  sin((x)*DEGRAD)
#define cosd(x)  cos((x)*DEGRAD)
#define tand(x)  tan((x)*DEGRAD)

#define atand(x)    (RADEG*atan(x))
#define asind(x)    (RADEG*asin(x))
#define acosd(x)    (RADEG*acos(x))
#define atan2d(y,x) (RADEG*atan2(y,x))


/* Following are some macros around the "workhorse" function __daylen__ */
/* They mainly fill in the desired values for the reference altitude    */
/* below the horizon, and also selects whether this altitude should     */
/* refer to the Sun's center or its upper limb.     */


/* This macro computes the length of the day, from sunrise to sunset. */
/* Sunrise/set is considered to occur when the Sun's upper limb is   */
/* 35 arc minutes below the horizon (this accounts for the refraction */
/* of the Earth's atmosphere).   */
#define day_length(year,month,day,lon,lat)  \
        __daylen__( year, month, day, lon, lat, -35.0/60.0, 1 )

/* This macro computes the length of the day, including civil twilight. */
/* Civil twilight starts/ends when the Sun's center is 6 degrees below  */
/* the horizon.     */
#define day_civil_twilight_length(year,month,day,lon,lat)  \
        __daylen__( year, month, day, lon, lat, -6.0, 0 )

/* This macro computes the length of the day, incl. nautical twilight.  */
/* Nautical twilight starts/ends when the Sun's center is 12 degrees    */
/* below the horizon.     */
#define day_nautical_twilight_length(year,month,day,lon,lat)  \
        __daylen__( year, month, day, lon, lat, -12.0, 0 )

/* This macro computes the length of the day, incl. astronomical
twilight. */
/* Astronomical twilight starts/ends when the Sun's center is 18 degrees
  */
/* below the horizon.        */
#define day_astronomical_twilight_length(year,month,day,lon,lat)  \
        __daylen__( year, month, day, lon, lat, -18.0, 0 )


/* This macro computes times for sunrise/sunset.   */
/* Sunrise/set is considered to occur when the Sun's upper limb is   */
/* 35 arc minutes below the horizon (this accounts for the refraction */
/* of the Earth's atmosphere).   */
#define sun_rise_set(year,month,day,lon,lat,rise,set)  \
        __sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set )

/* This macro computes the start and end times of civil twilight.     */
/* Civil twilight starts/ends when the Sun's center is 6 degrees below  */
/* the horizon.     */
#define civil_twilight(year,month,day,lon,lat,start,end)  \
        __sunriset__( year, month, day, lon, lat, -6.0, 0, start, end )

/* This macro computes the start and end times of nautical twilight.    */
/* Nautical twilight starts/ends when the Sun's center is 12 degrees    */
/* below the horizon.     */
#define nautical_twilight(year,month,day,lon,lat,start,end)  \
        __sunriset__( year, month, day, lon, lat, -12.0, 0, start, end )

/* This macro computes the start and end times of astronomical twilight.
  */
/* Astronomical twilight starts/ends when the Sun's center is 18 degrees
  */
/* below the horizon.        */
#define astronomical_twilight(year,month,day,lon,lat,start,end)  \
        __sunriset__( year, month, day, lon, lat, -18.0, 0, start, end )

/* Function prototypes */

double
  __daylen__ (int year, int month, int day, double lon, double lat,
	      double altit, int upper_limb);

int
  __sunriset__ (int year, int month, int day, double lon, double lat,
		double altit, int upper_limb, double *rise, double *set);

void sunpos (double d, double *lon, double *r);

void sun_RA_dec (double d, double *RA, double *dec, double *r);

double revolution (double x);

double rev180 (double x);

double GMST0 (double d);

/* A small test program */

void
main (void)
{
    int year, month, day;
    double lon, lat;
    double daylen, civlen, nautlen, astrlen;
    double rise, set, civ_start, civ_end, naut_start, naut_end, astr_start,
      astr_end;
    int rs, civ, naut, astr;

    printf ("Longitude (+ is east) and latitude (+ is north) : ");
    scanf ("%lf %lf", &lon, &lat);

    for (;;)
      {
	  printf ("Input date ( yyyy mm dd ): ");
	  if (scanf ("%d %d %d", &year, &month, &day) != 3)
	      exit (0);

	  daylen = day_length (year, month, day, lon, lat);
	  civlen = day_civil_twilight_length (year, month, day, lon, lat);
	  nautlen = day_nautical_twilight_length (year, month, day, lon, lat);
	  astrlen = day_astronomical_twilight_length (year, month, day, lon, lat);

	  printf ("Day length:                 %5.2f hours\n", daylen);
	  printf ("With civil twilight         %5.2f hours\n", civlen);
	  printf ("With nautical twilight      %5.2f hours\n", nautlen);
	  printf ("With astronomical twilight  %5.2f hours\n", astrlen);
	  printf ("Length of twilight: civil   %5.2f hours\n", (civlen -
daylen) / 2.0);
	  printf ("                  nautical  %5.2f hours\n", (nautlen -
daylen) / 2.0);
	  printf ("              astronomical  %5.2f hours\n", (astrlen -
daylen) / 2.0);

	  rs = sun_rise_set (year, month, day, lon, lat, &rise, &set);
	  civ = civil_twilight (year, month, day, lon, lat, &civ_start, &civ_end);
	  naut = nautical_twilight (year, month, day, lon, lat, &naut_start,
&naut_end);
	  astr = astronomical_twilight (year, month, day, lon, lat,
&astr_start, &astr_end);

	  printf ("Sun at south %5.2fh UT\n", (rise + set) / 2.0);

	  switch (rs)
	    {
	    case 0:
		printf ("Sun rises %5.2fh UT, sets %5.2fh UT\n", rise, set);
		break;
	    case +1:
		printf ("Sun above horizon\n");
		break;
	    case -1:
		printf ("Sun below horizon\n");
		break;
	    }

	  switch (civ)
	    {
	    case 0:
		printf ("Civil twilight starts %5.2fh, ends %5.2fh UT\n", civ_start,
civ_end);
		break;
	    case +1:
		printf ("Never darker than civil twilight\n");
		break;
	    case -1:
		printf ("Never as bright as civil twilight\n");
		break;
	    }

	  switch (naut)
	    {
	    case 0:
		printf ("Nautical twilight starts %5.2fh, ends %5.2fh UT\n",
naut_start, naut_end);
		break;
	    case +1:
		printf ("Never darker than nautical twilight\n");
		break;
	    case -1:
		printf ("Never as bright as nautical twilight \n");
		break;
	    }

	  switch (astr)
	    {
	    case 0:
		printf ("Astronomical twilight starts %5.2fh, ends %5.2fh UT\n",
astr_start, astr_end);
		break;
	    case +1:
		printf ("Never darker than astronomical twilight \n ");
		break;
	    case -1:
		printf ("Never as bright as astronomical twilight \n ");
		break;
	    }
      }
}


/* The "workhorse" function for sun rise/set times */

int
__sunriset__ (int year, int month, int day, double lon, double lat,
	      double altit, int upper_limb, double *trise, double *tset)
/***************************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only.   */
/*       Eastern longitude positive, Western longitude negative  */
/*       Northern latitude positive, Southern latitude negative  */
/*       The longitude value IS critical in this function! */
/*       altit = the altitude which the Sun should cross   */
/*               Set to -35/60 degrees for rise/set, -6 degrees  */
/*               for civil, -12 degrees for nautical and -18     */
/*               degrees for astronomical twilight.              */
/*         upper_limb: non-zero -> upper limb, zero -> center    */
/*               Set to non-zero (e.g. 1) when computing rise/set  */
/*               times, and to zero when computing start/end of    */
/*               twilight.                                         */
/*        *rise = where to store the rise time                     */
/*        *set  = where to store the set  time                     */
/*                Both times are relative to the specified
altitude,  */
/*                and thus this function can be used to comupte    */
/*                various twilight times, as well as rise/set times  */
/* Return value:  0 = sun rises/sets this day, times stored at       */
/*                    *trise and *tset.                              */
/*               +1 = sun above the specified "horizon" 24 hours.    */
/*                    *trise set to time when the sun is at south,   */
/*                    minus 12 hours while *tset is set to the     south  */
/*                    time plus 12 hours. "Day" length = 24 hours    */
/*               -1 = sun is below the specified "horizon" 24 hours  */
/*                    "Day" length = 0 hours, *trise and *tset are   */
/*                    both set to the time when the sun is at
south.  */
/*                                                                   */
/**********************************************************************/
{
    double d,			/* Days since 2000 Jan 0.0 (negative before) */
      sr,			/* Solar distance, astronomical units */
      sRA,			/* Sun's Right Ascension */
      sdec,			/* Sun's declination */
      sradius,			/* Sun's apparent radius */
      t,			/* Diurnal arc */
      tsouth,			/* Time when Sun is at south */
      sidtime;			/* Local sidereal time */

    int rc = 0;			/* Return cde from function - usually 0 */

    /* Compute d of 12h local mean solar time */
    d = days_since_2000_Jan_0 (year, month, day) + 0.5 - lon / 360.0;

    /* Compute local sideral time of this moment */
    sidtime = revolution (GMST0 (d) + 180.0 + lon);

    /* Compute Sun's RA + Decl at this moment */
    sun_RA_dec (d, &sRA, &sdec, &sr);

    /* Compute time when Sun is at south - in hours UT */
    tsouth = 12.0 - rev180 (sidtime - sRA) / 15.0;

    /* Compute the Sun's apparent radius, degrees */
    sradius = 0.2666 / sr;

    /* Do correction to upper limb, if necessary */
    if (upper_limb)
	altit -= sradius;

    /* Compute the diurnal arc that the Sun traverses to reach */
    /* the specified altitide altit: */
    {
	double cost;

	cost = (sind (altit) - sind (lat) * sind (sdec)) /
	    (cosd (lat) * cosd (sdec));
	if (cost >= 1.0)
	    rc = -1, t = 0.0;	/* Sun always below altit */
	else if (cost <= -1.0)
	    rc = +1, t = 12.0;	/* Sun always above altit */
	else
	    t = acosd (cost) / 15.0;	/* The diurnal arc, hours */
    }

    /* Store rise and set times - in hours UT */
    *trise = tsouth - t;
    *tset = tsouth + t;

    return rc;
}				/* __sunriset__ */

/* The "workhorse" function */

double
__daylen__ (int year, int month, int day, double lon, double lat,
	    double altit, int upper_limb)
/**********************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only.  */
/*       Eastern longitude positive, Western longitude negative  */
/*       Northern latitude positive, Southern latitude negative  */
/*       The longitude value is not critical. Set it to the correct  */
/*       longitude if you're picky, otherwise set to to, say, 0.0  */
/*       The latitude however IS critical - be sure to get it correct */
/*       altit = the altitude which the Sun should cross   */
/*               Set to -35/60 degrees for rise/set, -6 degrees   */
/*               for civil, -12 degrees for nautical and -18   */
/*               degrees for astronomical twilight.   */
/*         upper_limb: non-zero -> upper limb, zero -> center   */
/*               Set to non-zero (e.g. 1) when computing day length   */
/*               and to zero when computing day+twilight length.   */
/**********************************************************************/
{
    double d,			/* Days since 2000 Jan 0.0 (negative before) */
      obl_ecl,			/* Obliquity (inclination) of Earth's axis */
      sr,			/* Solar distance, astronomical units */
      slon,			/* True solar longitude */
      sin_sdecl,		/* Sine of Sun's declination */
      cos_sdecl,		/* Cosine of Sun's declination */
      sradius,			/* Sun's apparent radius */
      t;			/* Diurnal arc */

    /* Compute d of 12h local mean solar time */
    d = days_since_2000_Jan_0 (year, month, day) + 0.5 - lon / 360.0;

    /*
     * Compute obliquity of ecliptic (inclination of Earth's axis)
     */
    obl_ecl = 23.4393 - 3.563E-7 * d;

    /* Compute Sun's position */
    sunpos (d, &slon, &sr);

    /* Compute sine and cosine of Sun's declination */
    sin_sdecl = sind (obl_ecl) * sind (slon);
    cos_sdecl = sqrt (1.0 - sin_sdecl * sin_sdecl);

    /* Compute the Sun's apparent radius, degrees */
    sradius = 0.2666 / sr;

    /* Do correction to upper limb, if necessary */
    if (upper_limb)
	altit -= sradius;

    /* Compute the diurnal arc that the Sun traverses to reach */
    /* the specified altitide altit: */
    {
	double cost;

	cost = (sind (altit) - sind (lat) * sin_sdecl) / (cosd (lat) * cos_sdecl);
	if (cost >= 1.0)
	    t = 0.0;		/* Sun always below altit */
	else if (cost <= -1.0)
	    t = 24.0;		/* Sun always above altit */
	else
	    t = (2.0 / 15.0) * acosd (cost);	/* The diurnal arc, hours */
    }
    return t;
}				/* __daylen__ */

/* This function computes the Sun's position at any instant */

void
sunpos (double d, double *lon, double *r)
/******************************************************/
/* Computes the Sun's ecliptic longitude and distance */
/* at an instant given in d, number of days since     */
/* 2000 Jan 0.0.  The Sun's ecliptic latitude is not  */
/* computed, since it's always very near 0.           */
/******************************************************/
{
    double M,			/* Mean anomaly of the Sun */
      w,			/* Mean longitude of perihelion */
    /* Note: Sun's mean longitude = M + w */
      e,			/* Eccentricity of Earth's orbit */
      E,			/* Eccentric anomaly */
      x, y,			/* x, y coordinates in orbit */
      v;			/* True anomaly */

    /* Compute mean elements */
    M = revolution (356.0470 + 0.9856002585 * d);
    w = 282.9404 + 4.70935E-5 * d;
    e = 0.016709 - 1.151E-9 * d;

    /* Compute true longitude and radius vector */
    E = M + e * RADEG * sind (M) * (1.0 + e * cosd (M));
    x = cosd (E) - e;
    y = sqrt (1.0 - e * e) * sind (E);
    *r = sqrt (x * x + y * y);	/* Solar distance */
    v = atan2d (y, x);		/* True anomaly */
    *lon = v + w;		/* True solar longitude */
    if (*lon >= 360.0)
	*lon -= 360.0;		/* Make it 0..360 degrees */
}

void
sun_RA_dec (double d, double *RA, double *dec, double *r)
{
    double lon, obl_ecl, x, y, z;

    /* Compute Sun's ecliptical coordinates */
    sunpos (d, &lon, r);

    /* Compute ecliptic rectangular coordinates (z=0) */
    x = *r * cosd (lon);
    y = *r * sind (lon);

    /*
     * Compute obliquity of ecliptic (inclination of Earth's axis)
     */
    obl_ecl = 23.4393 - 3.563E-7 * d;

    /*
     * Convert to equatorial rectangular coordinates - x is uchanged
     */
    z = y * sind (obl_ecl);
    y = y * cosd (obl_ecl);

    /* Convert to spherical coordinates */
    *RA = atan2d (y, x);
    *dec = atan2d (z, sqrt (x * x + y * y));

}				/* sun_RA_dec */


/******************************************************************/
/* This function reduces any angle to within the first revolution */
/* by subtracting or adding even multiples of 360.0 until the     */
/* result is >= 0.0 and < 360.0                                   */
/******************************************************************/

#define INV360    ( 1.0 / 360.0 )

double
revolution (double x)
/*****************************************/
/* Reduce angle to within 0..360 degrees */
/*****************************************/
{
    return (x - 360.0 * floor (x * INV360));
}				/* revolution */

double
rev180 (double x)
/*********************************************/
/* Reduce angle to within +180..+180 degrees */
/*********************************************/
{
    return (x - 360.0 * floor (x * INV360 + 0.5));
}				/* revolution */

/*******************************************************************/
/* This function computes GMST0, the Greenwhich Mean Sidereal Time */
/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at  */
/* 0h UT).  GMST is then the sidereal time at Greenwich at any     */
/* time of the day.  I've generelized GMST0 as well, and define it */
/* as:  GMST0 = GMST - UT  --  this allows GMST0 to be computed at */
/* other times than 0h UT as well.  While this sounds somewhat     */
/* contradictory, it is very practical:  instead of computing      */
/* GMST like:                                                      */
/*                                                                 */
/*  GMST = (GMST0) + UT * (366.2422/365.2422)                      */
/*                                                                 */
/* where (GMST0) is the GMST last time UT was 0 hours, one simply  */
/* computes:                                                       */
/*                                                                 */
/*  GMST = GMST0 + UT                                              */
/*                                                                 */
/* where GMST0 is the GMST "at 0h UT" but at the current moment!   */
/* Defined in this way, GMST0 will increase with about 4 min a     */
/* day.  It also happens that GMST0 (in degrees, 1 hr = 15 degr)   */
/* is equal to the Sun's mean longitude plus/minus 180 degrees!    */
/* (if we neglect aberration, which amounts to 20 seconds of arc   */
/* or 1.33 seconds of time)                                        */
/*                                                                 */
/*******************************************************************/

double
GMST0 (double d)
{
    double sidtim0;
    /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr  */
    /* L = M + w, as defined in sunpos().  Since I'm too lazy to */
    /* add these numbers, I'll let the C compiler do it for me.  */
    /* Any decent C compiler will add the constants at compile   */
    /* time, imposing no runtime or code overhead.               */
    sidtim0 = revolution ((180.0 + 356.0470 + 282.9404) +
			  (0.9856002585 + 4.70935E-5) * d);
    return sidtim0;
}				/* GMST0 */



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?48EE9EFA.3080009>