Date: Mon, 16 Jul 2012 00:22:08 +0000 (UTC) From: Stephen Montgomery-Smith <stephen@FreeBSD.org> To: ports-committers@freebsd.org, svn-ports-all@freebsd.org, svn-ports-head@freebsd.org Subject: svn commit: r300915 - in head/math/sage: . files Message-ID: <201207160022.q6G0M8nR087520@svn.freebsd.org>
next in thread | raw e-mail | index | archive | help
Author: stephen Date: Mon Jul 16 00:22:08 2012 New Revision: 300915 URL: http://svn.freebsd.org/changeset/ports/300915 Log: - Rename spkg-patch files in files directory to include generic package name instead of original package name. Added: head/math/sage/files/spkg-patch-cephes_-_big-patch - copied unchanged from r300913, head/math/sage/files/spkg-patch-cephes-2.8_-_big-patch head/math/sage/files/spkg-patch-gap_-_patches_sysfiles.c - copied unchanged from r300913, head/math/sage/files/spkg-patch-gap-4.4.12.p6_-_patches_sysfiles.c head/math/sage/files/spkg-patch-polybori_-_patches_Cudd.cudd.cudd.h - copied unchanged from r300913, head/math/sage/files/spkg-patch-polybori-0.8.1.p1_-_patches_Cudd.cudd.cudd.h head/math/sage/files/spkg-patch-pycrypto_-_patches_src.libtom.tomcrypt_pk.h - copied unchanged from r300913, head/math/sage/files/spkg-patch-pycrypto-2.1.0_-_patches_src.libtom.tomcrypt_pk.h head/math/sage/files/spkg-patch-pycrypto_-_spkg-install - copied unchanged from r300913, head/math/sage/files/spkg-patch-pycrypto-2.1.0_-_spkg-install head/math/sage/files/spkg-patch-python_-_src_Doc_library_fcntl.rst - copied unchanged from r300913, head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Doc_library_fcntl.rst head/math/sage/files/spkg-patch-python_-_src_Modules__ctypes_libffi_configure - copied unchanged from r300913, head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Modules__ctypes_libffi_configure head/math/sage/files/spkg-patch-python_-_src_Modules_fcntlmodule.c - copied unchanged from r300913, head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Modules_fcntlmodule.c head/math/sage/files/spkg-patch-python_-_src_Python_thread_pthread.h - copied unchanged from r300913, head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Python_thread_pthread.h head/math/sage/files/spkg-patch-python_-_src_setup.py - copied unchanged from r300913, head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_setup.py head/math/sage/files/spkg-patch-sage_-_sage_misc_getusage.py - copied unchanged from r300913, head/math/sage/files/spkg-patch-sage-5.0_-_sage_misc_getusage.py head/math/sage/files/spkg-patch-singular_-_patches_omalloc.configure.patch - copied unchanged from r300913, head/math/sage/files/spkg-patch-singular-3-1-3-3.p6_-_patches_omalloc.configure.patch head/math/sage/files/spkg-patch-singular_-_spkg-install - copied unchanged from r300913, head/math/sage/files/spkg-patch-singular-3-1-3-3.p6_-_spkg-install head/math/sage/files/spkg-patch-sympow_-_src_disk.c - copied unchanged from r300913, head/math/sage/files/spkg-patch-sympow-1.018.1.p11_-_src_disk.c Deleted: head/math/sage/files/spkg-patch-cephes-2.8_-_big-patch head/math/sage/files/spkg-patch-gap-4.4.12.p6_-_patches_sysfiles.c head/math/sage/files/spkg-patch-polybori-0.8.1.p1_-_patches_Cudd.cudd.cudd.h head/math/sage/files/spkg-patch-pycrypto-2.1.0_-_patches_src.libtom.tomcrypt_pk.h head/math/sage/files/spkg-patch-pycrypto-2.1.0_-_spkg-install head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Doc_library_fcntl.rst head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Modules__ctypes_libffi_configure head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Modules_fcntlmodule.c head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_Python_thread_pthread.h head/math/sage/files/spkg-patch-python-2.7.2.p4_-_src_setup.py head/math/sage/files/spkg-patch-sage-5.0_-_sage_misc_getusage.py head/math/sage/files/spkg-patch-singular-3-1-3-3.p6_-_patches_omalloc.configure.patch head/math/sage/files/spkg-patch-singular-3-1-3-3.p6_-_spkg-install head/math/sage/files/spkg-patch-sympow-1.018.1.p11_-_src_disk.c Modified: head/math/sage/Makefile Modified: head/math/sage/Makefile ============================================================================== --- head/math/sage/Makefile Mon Jul 16 00:12:45 2012 (r300914) +++ head/math/sage/Makefile Mon Jul 16 00:22:08 2012 (r300915) @@ -86,12 +86,9 @@ post-patch: # Apply the patches to the appropriate xz'ed tarballs contained in # ${WRKSRC}/spkg/standard. The names of the patches are -# spkg-${ORIGINAL_NAME_OF_TARBALL}_-_${NAME_OF_PATCH}. +# spkg-${GENERIC_NAME_OF_TARBALL}_-_${NAME_OF_PATCH}. # The actual name of the tarball will be deduced from the second line of the # patch. -# ORIGINAL_NAME_OF_TARBALL is there for historical reasons (because renaming -# the patch will ruin the CVS history). It might be renamed to -# GENERIC_NAME_OF_TARBALL when ports moves to SVN. @${MKDIR} ${WRKSRC}/tmp @${RM} -rf ${WRKSRC}/tmp/* Copied: head/math/sage/files/spkg-patch-cephes_-_big-patch (from r300913, head/math/sage/files/spkg-patch-cephes-2.8_-_big-patch) ============================================================================== --- /dev/null 00:00:00 1970 (empty, because file is newly added) +++ head/math/sage/files/spkg-patch-cephes_-_big-patch Mon Jul 16 00:22:08 2012 (r300915, copy of r300913, head/math/sage/files/spkg-patch-cephes-2.8_-_big-patch) @@ -0,0 +1,1490 @@ +--- cephes-2.8/spkg-install.orig 2010-05-26 11:10:08.000000000 +1000 ++++ cephes-2.8/spkg-install 2010-07-26 08:25:54.669312906 +1000 +@@ -1,12 +1,11 @@ + #!/usr/bin/env bash + +-if [ "$UNAME" != "CYGWIN" ]; then +- echo "We do not install the cephes library on any operating system except Cygwin." +- exit 0 +-fi ++# Abort if anything fails unexpectedly ++set -e + + CUR=`pwd` + ++# Cygwin patch/build/install functions + function patch { + cd "$CUR" + cp patches/complex.h src/ +@@ -77,5 +76,20 @@ + make_c9x_complex + } + +-patch +-build ++# Actually execute the code ++if [ "$UNAME" = "CYGWIN" ]; then ++ patch ++ build ++elif [ "$UNAME" = "FreeBSD" ]; then ++ cp patches/Makefile_bsd src/Makefile ++ cp patches/c9x-complex/makefile src/c9x-complex ++ cp patches/c9x-complex/*.c src/c9x-complex ++ cp patches/double/makefile src/double ++ cp patches/ldouble/makefile patches/ldouble/gammal.c src/ldouble ++ cd src ++ make ++ make install ++else ++ echo "We only install the cephes library on Cygwin and FreeBSD." ++ exit 0 ++fi +--- cephes-2.8/patches/ldouble/makefile.orig 2010-04-06 19:27:43.000000000 +1000 ++++ cephes-2.8/patches/ldouble/makefile 2010-07-26 08:25:54.665317219 +1000 +@@ -12,7 +12,7 @@ + exp10l.o exp2l.o expl.o fdtrl.o gammal.o gdtrl.o igamil.o igaml.o \ + incbetl.o incbil.o isnanl.o j0l.o j1l.o jnl.o ldrand.o log10l.o log2l.o \ + logl.o nbdtrl.o ndtril.o ndtrl.o pdtrl.o powl.o powil.o sinhl.o sinl.o \ +-sqrtl.o stdtrl.o tanhl.o tanl.o unityl.o ynl.o \ ++sqrtl.o stdtrl.o tanhl.o tanl.o ynl.o \ + floorl.o polevll.o unityl.o mtherr.o + # cmplxl.o clogl.o + +--- cephes-2.8/patches/ldouble/gammal.c.patch.orig 2010-07-26 13:41:37.467088450 +1000 ++++ cephes-2.8/patches/ldouble/gammal.c.patch 2010-07-26 13:42:52.710029506 +1000 +@@ -0,0 +1,240 @@ ++--- ../../src/ldouble/gammal.c 2000-05-29 01:21:01.000000000 +1000 +++++ gammal.c 2010-07-26 13:38:38.030338022 +1000 ++@@ -6,20 +6,16 @@ ++ * ++ * SYNOPSIS: ++ * ++- * long double x, y, gammal(); ++- * extern int sgngam; +++ * long double x, y, tgammal(); ++ * ++- * y = gammal( x ); +++ * y = tgammal( x ); ++ * ++ * ++ * ++ * DESCRIPTION: ++ * ++ * Returns gamma function of the argument. The result is ++- * correctly signed, and the sign (+1 or -1) is also ++- * returned in a global (extern) variable named sgngam. ++- * This variable is also filled in by the logarithmic gamma ++- * function lgam(). +++ * correctly signed. ++ * ++ * Arguments |x| <= 13 are reduced by recurrence and the function ++ * approximated by a rational function of degree 7/8 in the ++@@ -38,7 +34,7 @@ ++ * Accuracy for large arguments is dominated by error in powl(). ++ * ++ */ ++-/* lgaml() +++/* lgammal() ++ * ++ * Natural logarithm of gamma function ++ * ++@@ -46,10 +42,10 @@ ++ * ++ * SYNOPSIS: ++ * ++- * long double x, y, lgaml(); ++- * extern int sgngam; +++ * long double x, y, lgammal(); +++ * extern int signgam; ++ * ++- * y = lgaml( x ); +++ * y = lgammal( x ); ++ * ++ * ++ * ++@@ -58,7 +54,7 @@ ++ * Returns the base e (2.718...) logarithm of the absolute ++ * value of the gamma function of the argument. ++ * The sign (+1 or -1) of the gamma function is returned in a ++- * global (extern) variable named sgngam. +++ * global (extern) variable named signgam. ++ * ++ * For arguments greater than 33, the logarithm of the gamma ++ * function is approximated by the logarithmic version of ++@@ -90,7 +86,6 @@ ++ Copyright 1994 by Stephen L. Moshier ++ */ ++ ++- ++ #include "mconf.h" ++ /* ++ gamma(x+2) = gamma(x+2) P(x)/Q(x) ++@@ -336,18 +331,18 @@ ++ }; ++ #endif ++ ++-int sgngaml = 0; ++-extern int sgngaml; +++/*int signgam = 0;*/ +++extern int signgam; ++ extern long double MAXLOGL, MAXNUML, PIL; ++ /* #define PIL 3.14159265358979323846L */ ++ /* #define MAXNUML 1.189731495357231765021263853E4932L */ ++ ++ #ifdef ANSIPROT ++ extern long double fabsl ( long double ); ++-extern long double lgaml ( long double ); +++extern long double lgammal ( long double ); ++ extern long double logl ( long double ); ++ extern long double expl ( long double ); ++-extern long double gammal ( long double ); +++extern long double tgammal ( long double ); ++ extern long double sinl ( long double ); ++ extern long double floorl ( long double ); ++ extern long double powl ( long double, long double ); ++@@ -357,7 +352,7 @@ ++ extern int isfinitel ( long double ); ++ static long double stirf ( long double ); ++ #else ++-long double fabsl(), lgaml(), logl(), expl(), gammal(), sinl(); +++long double fabsl(), lgammal(), logl(), expl(), tgammal(), sinl(); ++ long double floorl(), powl(), polevll(), p1evll(), isnanl(), isfinitel(); ++ static long double stirf(); ++ #endif ++@@ -403,13 +398,13 @@ ++ ++ ++ ++-long double gammal(x) +++long double tgammal(x) ++ long double x; ++ { ++ long double p, q, z; ++ int i; +++int signgam = 1; ++ ++-sgngaml = 1; ++ #ifdef NANS ++ if( isnanl(x) ) ++ return(NANL); ++@@ -435,7 +430,7 @@ ++ { ++ gamnan: ++ #ifdef NANS ++- mtherr( "gammal", DOMAIN ); +++ mtherr( "tgammal", DOMAIN ); ++ return (NANL); ++ #else ++ goto goverf; ++@@ -443,7 +438,7 @@ ++ } ++ i = p; ++ if( (i & 1) == 0 ) ++- sgngaml = -1; +++ signgam = -1; ++ z = q - p; ++ if( z > 0.5L ) ++ { ++@@ -456,10 +451,10 @@ ++ { ++ goverf: ++ #ifdef INFINITIES ++- return( sgngaml * INFINITYL); +++ return( signgam * INFINITYL); ++ #else ++- mtherr( "gammal", OVERFLOW ); ++- return( sgngaml * MAXNUML); +++ mtherr( "tgammal", OVERFLOW ); +++ return( signgam * MAXNUML); ++ #endif ++ } ++ z = PIL/z; ++@@ -468,7 +463,7 @@ ++ { ++ z = stirf(x); ++ } ++- return( sgngaml * z ); +++ return( signgam * z ); ++ } ++ ++ z = 1.0L; ++@@ -642,13 +637,13 @@ ++ /* Logarithm of gamma function */ ++ ++ ++-long double lgaml(x) +++long double lgammal(x) ++ long double x; ++ { ++ long double p, q, w, z, f, nx; ++ int i; ++ ++-sgngaml = 1; +++signgam = 1; ++ #ifdef NANS ++ if( isnanl(x) ) ++ return(NANL); ++@@ -660,12 +655,12 @@ ++ if( x < -34.0L ) ++ { ++ q = -x; ++- w = lgaml(q); /* note this modifies sgngam! */ +++ w = lgammal(q); /* note this modifies signgam! */ ++ p = floorl(q); ++ if( p == q ) ++ { ++ #ifdef INFINITIES ++- mtherr( "lgaml", SING ); +++ mtherr( "lgammal", SING ); ++ return (INFINITYL); ++ #else ++ goto loverf; ++@@ -673,9 +668,9 @@ ++ } ++ i = p; ++ if( (i & 1) == 0 ) ++- sgngaml = -1; +++ signgam = -1; ++ else ++- sgngaml = 1; +++ signgam = 1; ++ z = q - p; ++ if( z > 0.5L ) ++ { ++@@ -711,11 +706,11 @@ ++ } ++ if( z < 0.0L ) ++ { ++- sgngaml = -1; +++ signgam = -1; ++ z = -z; ++ } ++ else ++- sgngaml = 1; +++ signgam = 1; ++ if( x == 2.0L ) ++ return( logl(z) ); ++ x = (nx - 2.0L) + f; ++@@ -727,10 +722,10 @@ ++ { ++ loverf: ++ #ifdef INFINITIES ++- return( sgngaml * INFINITYL ); +++ return( signgam * INFINITYL ); ++ #else ++- mtherr( "lgaml", OVERFLOW ); ++- return( sgngaml * MAXNUML ); +++ mtherr( "lgammal", OVERFLOW ); +++ return( signgam * MAXNUML ); ++ #endif ++ } ++ ++@@ -754,11 +749,11 @@ ++ q = z / (x * polevll( x, S, 8 )); ++ if( q < 0.0L ) ++ { ++- sgngaml = -1; +++ signgam = -1; ++ q = -q; ++ } ++ else ++- sgngaml = 1; +++ signgam = 1; ++ q = logl( q ); ++ return(q); ++ } +--- cephes-2.8/patches/ldouble/gammal.c.orig 2010-07-26 13:12:17.957613369 +1000 ++++ cephes-2.8/patches/ldouble/gammal.c 2010-07-26 13:38:38.030338022 +1000 +@@ -0,0 +1,759 @@ ++/* gammal.c ++ * ++ * Gamma function ++ * ++ * ++ * ++ * SYNOPSIS: ++ * ++ * long double x, y, tgammal(); ++ * ++ * y = tgammal( x ); ++ * ++ * ++ * ++ * DESCRIPTION: ++ * ++ * Returns gamma function of the argument. The result is ++ * correctly signed. ++ * ++ * Arguments |x| <= 13 are reduced by recurrence and the function ++ * approximated by a rational function of degree 7/8 in the ++ * interval (2,3). Large arguments are handled by Stirling's ++ * formula. Large negative arguments are made positive using ++ * a reflection formula. ++ * ++ * ++ * ACCURACY: ++ * ++ * Relative error: ++ * arithmetic domain # trials peak rms ++ * IEEE -40,+40 10000 3.6e-19 7.9e-20 ++ * IEEE -1755,+1755 10000 4.8e-18 6.5e-19 ++ * ++ * Accuracy for large arguments is dominated by error in powl(). ++ * ++ */ ++/* lgammal() ++ * ++ * Natural logarithm of gamma function ++ * ++ * ++ * ++ * SYNOPSIS: ++ * ++ * long double x, y, lgammal(); ++ * extern int signgam; ++ * ++ * y = lgammal( x ); ++ * ++ * ++ * ++ * DESCRIPTION: ++ * ++ * Returns the base e (2.718...) logarithm of the absolute ++ * value of the gamma function of the argument. ++ * The sign (+1 or -1) of the gamma function is returned in a ++ * global (extern) variable named signgam. ++ * ++ * For arguments greater than 33, the logarithm of the gamma ++ * function is approximated by the logarithmic version of ++ * Stirling's formula using a polynomial approximation of ++ * degree 4. Arguments between -33 and +33 are reduced by ++ * recurrence to the interval [2,3] of a rational approximation. ++ * The cosecant reflection formula is employed for arguments ++ * less than -33. ++ * ++ * Arguments greater than MAXLGML (10^4928) return MAXNUML. ++ * ++ * ++ * ++ * ACCURACY: ++ * ++ * ++ * arithmetic domain # trials peak rms ++ * IEEE -40, 40 100000 2.2e-19 4.6e-20 ++ * IEEE 10^-2000,10^+2000 20000 1.6e-19 3.3e-20 ++ * The error criterion was relative when the function magnitude ++ * was greater than one but absolute when it was less than one. ++ * ++ */ ++ ++/* gamma.c */ ++/* gamma function */ ++ ++/* ++Copyright 1994 by Stephen L. Moshier ++*/ ++ ++#include "mconf.h" ++/* ++gamma(x+2) = gamma(x+2) P(x)/Q(x) ++0 <= x <= 1 ++Relative error ++n=7, d=8 ++Peak error = 1.83e-20 ++Relative error spread = 8.4e-23 ++*/ ++#if UNK ++static long double P[8] = { ++ 4.212760487471622013093E-5L, ++ 4.542931960608009155600E-4L, ++ 4.092666828394035500949E-3L, ++ 2.385363243461108252554E-2L, ++ 1.113062816019361559013E-1L, ++ 3.629515436640239168939E-1L, ++ 8.378004301573126728826E-1L, ++ 1.000000000000000000009E0L, ++}; ++static long double Q[9] = { ++-1.397148517476170440917E-5L, ++ 2.346584059160635244282E-4L, ++-1.237799246653152231188E-3L, ++-7.955933682494738320586E-4L, ++ 2.773706565840072979165E-2L, ++-4.633887671244534213831E-2L, ++-2.243510905670329164562E-1L, ++ 4.150160950588455434583E-1L, ++ 9.999999999999999999908E-1L, ++}; ++#endif ++#if IBMPC ++static short P[] = { ++0x434a,0x3f22,0x2bda,0xb0b2,0x3ff0, XPD ++0xf5aa,0xe82f,0x335b,0xee2e,0x3ff3, XPD ++0xbe6c,0x3757,0xc717,0x861b,0x3ff7, XPD ++0x7f43,0x5196,0xb166,0xc368,0x3ff9, XPD ++0x9549,0x8eb5,0x8c3a,0xe3f4,0x3ffb, XPD ++0x8d75,0x23af,0xc8e4,0xb9d4,0x3ffd, XPD ++0x29cf,0x19b3,0x16c8,0xd67a,0x3ffe, XPD ++0x0000,0x0000,0x0000,0x8000,0x3fff, XPD ++}; ++static short Q[] = { ++0x5473,0x2de8,0x1268,0xea67,0xbfee, XPD ++0x334b,0xc2f0,0xa2dd,0xf60e,0x3ff2, XPD ++0xbeed,0x1853,0xa691,0xa23d,0xbff5, XPD ++0x296e,0x7cb1,0x5dfd,0xd08f,0xbff4, XPD ++0x0417,0x7989,0xd7bc,0xe338,0x3ff9, XPD ++0x3295,0x3698,0xd580,0xbdcd,0xbffa, XPD ++0x75ef,0x3ab7,0x4ad3,0xe5bc,0xbffc, XPD ++0xe458,0x2ec7,0xfd57,0xd47c,0x3ffd, XPD ++0x0000,0x0000,0x0000,0x8000,0x3fff, XPD ++}; ++#endif ++#if MIEEE ++static long P[24] = { ++0x3ff00000,0xb0b22bda,0x3f22434a, ++0x3ff30000,0xee2e335b,0xe82ff5aa, ++0x3ff70000,0x861bc717,0x3757be6c, ++0x3ff90000,0xc368b166,0x51967f43, ++0x3ffb0000,0xe3f48c3a,0x8eb59549, ++0x3ffd0000,0xb9d4c8e4,0x23af8d75, ++0x3ffe0000,0xd67a16c8,0x19b329cf, ++0x3fff0000,0x80000000,0x00000000, ++}; ++static long Q[27] = { ++0xbfee0000,0xea671268,0x2de85473, ++0x3ff20000,0xf60ea2dd,0xc2f0334b, ++0xbff50000,0xa23da691,0x1853beed, ++0xbff40000,0xd08f5dfd,0x7cb1296e, ++0x3ff90000,0xe338d7bc,0x79890417, ++0xbffa0000,0xbdcdd580,0x36983295, ++0xbffc0000,0xe5bc4ad3,0x3ab775ef, ++0x3ffd0000,0xd47cfd57,0x2ec7e458, ++0x3fff0000,0x80000000,0x00000000, ++}; ++#endif ++/* ++static long double P[] = { ++-3.01525602666895735709e0L, ++-3.25157411956062339893e1L, ++-2.92929976820724030353e2L, ++-1.70730828800510297666e3L, ++-7.96667499622741999770e3L, ++-2.59780216007146401957e4L, ++-5.99650230220855581642e4L, ++-7.15743521530849602425e4L ++}; ++static long double Q[] = { ++ 1.00000000000000000000e0L, ++-1.67955233807178858919e1L, ++ 8.85946791747759881659e1L, ++ 5.69440799097468430177e1L, ++-1.98526250512761318471e3L, ++ 3.31667508019495079814e3L, ++ 1.60577839621734713377e4L, ++-2.97045081369399940529e4L, ++-7.15743521530849602412e4L ++}; ++*/ ++#define MAXGAML 1755.455L ++/*static long double LOGPI = 1.14472988584940017414L;*/ ++ ++/* Stirling's formula for the gamma function ++gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x)) ++z(x) = x ++13 <= x <= 1024 ++Relative error ++n=8, d=0 ++Peak error = 9.44e-21 ++Relative error spread = 8.8e-4 ++*/ ++#if UNK ++static long double STIR[9] = { ++ 7.147391378143610789273E-4L, ++-2.363848809501759061727E-5L, ++-5.950237554056330156018E-4L, ++ 6.989332260623193171870E-5L, ++ 7.840334842744753003862E-4L, ++-2.294719747873185405699E-4L, ++-2.681327161876304418288E-3L, ++ 3.472222222230075327854E-3L, ++ 8.333333333333331800504E-2L, ++}; ++#endif ++#if IBMPC ++static short STIR[] = { ++0x6ede,0x69f7,0x54e3,0xbb5d,0x3ff4, XPD ++0xc395,0x0295,0x4443,0xc64b,0xbfef, XPD ++0xba6f,0x7c59,0x5e47,0x9bfb,0xbff4, XPD ++0x5704,0x1a39,0xb11d,0x9293,0x3ff1, XPD ++0x30b7,0x1a21,0x98b2,0xcd87,0x3ff4, XPD ++0xbef3,0x7023,0x6a08,0xf09e,0xbff2, XPD ++0x3a1c,0x5ac8,0x3478,0xafb9,0xbff6, XPD ++0xc3c9,0x906e,0x38e3,0xe38e,0x3ff6, XPD ++0xa1d5,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD ++}; ++#endif ++#if MIEEE ++static long STIR[27] = { ++0x3ff40000,0xbb5d54e3,0x69f76ede, ++0xbfef0000,0xc64b4443,0x0295c395, ++0xbff40000,0x9bfb5e47,0x7c59ba6f, ++0x3ff10000,0x9293b11d,0x1a395704, ++0x3ff40000,0xcd8798b2,0x1a2130b7, ++0xbff20000,0xf09e6a08,0x7023bef3, ++0xbff60000,0xafb93478,0x5ac83a1c, ++0x3ff60000,0xe38e38e3,0x906ec3c9, ++0x3ffb0000,0xaaaaaaaa,0xaaaaa1d5, ++}; ++#endif ++#define MAXSTIR 1024.0L ++static long double SQTPI = 2.50662827463100050242E0L; ++ ++/* 1/gamma(x) = z P(z) ++ * z(x) = 1/x ++ * 0 < x < 0.03125 ++ * Peak relative error 4.2e-23 ++ */ ++#if UNK ++static long double S[9] = { ++-1.193945051381510095614E-3L, ++ 7.220599478036909672331E-3L, ++-9.622023360406271645744E-3L, ++-4.219773360705915470089E-2L, ++ 1.665386113720805206758E-1L, ++-4.200263503403344054473E-2L, ++-6.558780715202540684668E-1L, ++ 5.772156649015328608253E-1L, ++ 1.000000000000000000000E0L, ++}; ++#endif ++#if IBMPC ++static short S[] = { ++0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, XPD ++0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, XPD ++0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, XPD ++0x10b0,0xec17,0x87dc,0xacd7,0xbffa, XPD ++0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, XPD ++0xf183,0x126b,0xf47d,0xac0a,0xbffa, XPD ++0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, XPD ++0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, XPD ++0x0000,0x0000,0x0000,0x8000,0x3fff, XPD ++}; ++#endif ++#if MIEEE ++static long S[27] = { ++0xbff50000,0x9c7e25e5,0xd6d3baeb, ++0x3ff70000,0xec9ac74e,0xceb4fe9a, ++0xbff80000,0x9da5b0e9,0xdfef9225, ++0xbffa0000,0xacd787dc,0xec1710b0, ++0x3ffc0000,0xaa891905,0x75156b8d, ++0xbffa0000,0xac0af47d,0x126bf183, ++0xbffe0000,0xa7e7a013,0x57d17bf6, ++0x3ffe0000,0x93c467e3,0x7db0c7a9, ++0x3fff0000,0x80000000,0x00000000, ++}; ++#endif ++/* 1/gamma(-x) = z P(z) ++ * z(x) = 1/x ++ * 0 < x < 0.03125 ++ * Peak relative error 5.16e-23 ++ * Relative error spread = 2.5e-24 ++ */ ++#if UNK ++static long double SN[9] = { ++ 1.133374167243894382010E-3L, ++ 7.220837261893170325704E-3L, ++ 9.621911155035976733706E-3L, ++-4.219773343731191721664E-2L, ++-1.665386113944413519335E-1L, ++-4.200263503402112910504E-2L, ++ 6.558780715202536547116E-1L, ++ 5.772156649015328608727E-1L, ++-1.000000000000000000000E0L, ++}; ++#endif ++#if IBMPC ++static short SN[] = { ++0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, XPD ++0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, XPD ++0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, XPD ++0x783f,0x41dd,0x87d1,0xacd7,0xbffa, XPD ++0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, XPD ++0x7f64,0x1234,0xf47d,0xac0a,0xbffa, XPD ++0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, XPD ++0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, XPD ++0x0000,0x0000,0x0000,0x8000,0xbfff, XPD ++}; ++#endif ++#if MIEEE ++static long SN[27] = { ++0x3ff50000,0x948db9f7,0x02de5dd1, ++0x3ff70000,0xec9cc5f1,0xdd68989b, ++0x3ff80000,0x9da5386f,0x18f02ca1, ++0xbffa0000,0xacd787d1,0x41dd783f, ++0xbffc0000,0xaa891905,0xd76d7a5b, ++0xbffa0000,0xac0af47d,0x12347f64, ++0x3ffe0000,0xa7e7a013,0x57d15e26, ++0x3ffe0000,0x93c467e3,0x7db0c7aa, ++0xbfff0000,0x80000000,0x00000000, ++}; ++#endif ++ ++/*int signgam = 0;*/ ++extern int signgam; ++extern long double MAXLOGL, MAXNUML, PIL; ++/* #define PIL 3.14159265358979323846L */ ++/* #define MAXNUML 1.189731495357231765021263853E4932L */ ++ ++#ifdef ANSIPROT ++extern long double fabsl ( long double ); ++extern long double lgammal ( long double ); ++extern long double logl ( long double ); ++extern long double expl ( long double ); ++extern long double tgammal ( long double ); ++extern long double sinl ( long double ); ++extern long double floorl ( long double ); ++extern long double powl ( long double, long double ); ++extern long double polevll ( long double, void *, int ); ++extern long double p1evll ( long double, void *, int ); ++extern int isnanl ( long double ); ++extern int isfinitel ( long double ); ++static long double stirf ( long double ); ++#else ++long double fabsl(), lgammal(), logl(), expl(), tgammal(), sinl(); ++long double floorl(), powl(), polevll(), p1evll(), isnanl(), isfinitel(); ++static long double stirf(); ++#endif ++#ifdef INFINITIES ++extern long double INFINITYL; ++#endif ++#ifdef NANS ++extern long double NANL; ++#endif ++ ++/* Gamma function computed by Stirling's formula. ++ */ ++static long double stirf(x) ++long double x; ++{ ++long double y, w, v; ++ ++w = 1.0L/x; ++/* For large x, use rational coefficients from the analytical expansion. */ ++if( x > 1024.0L ) ++ w = (((((6.97281375836585777429E-5L * w ++ + 7.84039221720066627474E-4L) * w ++ - 2.29472093621399176955E-4L) * w ++ - 2.68132716049382716049E-3L) * w ++ + 3.47222222222222222222E-3L) * w ++ + 8.33333333333333333333E-2L) * w ++ + 1.0L; ++else ++ w = 1.0L + w * polevll( w, STIR, 8 ); ++y = expl(x); ++if( x > MAXSTIR ) ++ { /* Avoid overflow in pow() */ ++ v = powl( x, 0.5L * x - 0.25L ); ++ y = v * (v / y); ++ } ++else ++ { ++ y = powl( x, x - 0.5L ) / y; ++ } ++y = SQTPI * y * w; ++return( y ); ++} ++ ++ ++ ++long double tgammal(x) ++long double x; ++{ ++long double p, q, z; ++int i; ++int signgam = 1; ++ ++#ifdef NANS ++if( isnanl(x) ) ++ return(NANL); ++#endif ++#ifdef INFINITIES ++if(x == INFINITYL) ++ return(INFINITYL); ++#ifdef NANS ++if(x == -INFINITYL) ++ goto gamnan; ++#endif ++#endif ++q = fabsl(x); ++ ++if( q > 13.0L ) ++ { ++ if( q > MAXGAML ) ++ goto goverf; ++ if( x < 0.0L ) ++ { ++ p = floorl(q); ++ if( p == q ) ++ { ++gamnan: ++#ifdef NANS ++ mtherr( "tgammal", DOMAIN ); ++ return (NANL); ++#else ++ goto goverf; ++#endif ++ } ++ i = p; ++ if( (i & 1) == 0 ) ++ signgam = -1; ++ z = q - p; ++ if( z > 0.5L ) ++ { ++ p += 1.0L; ++ z = q - p; ++ } ++ z = q * sinl( PIL * z ); ++ z = fabsl(z) * stirf(q); ++ if( z <= PIL/MAXNUML ) ++ { ++goverf: ++#ifdef INFINITIES ++ return( signgam * INFINITYL); ++#else ++ mtherr( "tgammal", OVERFLOW ); ++ return( signgam * MAXNUML); ++#endif ++ } ++ z = PIL/z; ++ } ++ else ++ { ++ z = stirf(x); ++ } ++ return( signgam * z ); ++ } ++ ++z = 1.0L; ++while( x >= 3.0L ) ++ { ++ x -= 1.0L; ++ z *= x; ++ } ++ ++while( x < -0.03125L ) ++ { ++ z /= x; ++ x += 1.0L; ++ } ++ ++if( x <= 0.03125L ) ++ goto small; ++ ++while( x < 2.0L ) ++ { ++ z /= x; ++ x += 1.0L; ++ } ++ ++if( x == 2.0L ) ++ return(z); ++ ++x -= 2.0L; ++p = polevll( x, P, 7 ); ++q = polevll( x, Q, 8 ); ++return( z * p / q ); ++ ++small: ++if( x == 0.0L ) ++ { ++ goto gamnan; ++ } ++else ++ { ++ if( x < 0.0L ) ++ { ++ x = -x; ++ q = z / (x * polevll( x, SN, 8 )); ++ } ++ else ++ q = z / (x * polevll( x, S, 8 )); ++ } ++return q; ++} ++ ++ ++ ++/* A[]: Stirling's formula expansion of log gamma ++ * B[], C[]: log gamma function between 2 and 3 ++ */ ++ ++ ++/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x A(1/x^2) ++ * x >= 8 ++ * Peak relative error 1.51e-21 ++ * Relative spread of error peaks 5.67e-21 ++ */ ++#if UNK ++static long double A[7] = { ++ 4.885026142432270781165E-3L, ++-1.880801938119376907179E-3L, ++ 8.412723297322498080632E-4L, ++-5.952345851765688514613E-4L, ++ 7.936507795855070755671E-4L, ++-2.777777777750349603440E-3L, ++ 8.333333333333331447505E-2L, ++}; ++#endif ++#if IBMPC ++static short A[] = { ++0xd984,0xcc08,0x91c2,0xa012,0x3ff7, XPD ++0x3d91,0x0304,0x3da1,0xf685,0xbff5, XPD ++0x3bdc,0xaad1,0xd492,0xdc88,0x3ff4, XPD ++0x8b20,0x9fce,0x844e,0x9c09,0xbff4, XPD ++0xf8f2,0x30e5,0x0092,0xd00d,0x3ff4, XPD ++0x4d88,0x03a8,0x60b6,0xb60b,0xbff6, XPD ++0x9fcc,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD ++}; ++#endif ++#if MIEEE ++static long A[21] = { ++0x3ff70000,0xa01291c2,0xcc08d984, ++0xbff50000,0xf6853da1,0x03043d91, ++0x3ff40000,0xdc88d492,0xaad13bdc, ++0xbff40000,0x9c09844e,0x9fce8b20, ++0x3ff40000,0xd00d0092,0x30e5f8f2, ++0xbff60000,0xb60b60b6,0x03a84d88, ++0x3ffb0000,0xaaaaaaaa,0xaaaa9fcc, ++}; ++#endif ++ ++/* log gamma(x+2) = x B(x)/C(x) ++ * 0 <= x <= 1 ++ * Peak relative error 7.16e-22 ++ * Relative spread of error peaks 4.78e-20 ++ */ ++#if UNK ++static long double B[7] = { ++-2.163690827643812857640E3L, ++-8.723871522843511459790E4L, ++-1.104326814691464261197E6L, ++-6.111225012005214299996E6L, ++-1.625568062543700591014E7L, ++-2.003937418103815175475E7L, ++-8.875666783650703802159E6L, ++}; ++static long double C[7] = { ++/* 1.000000000000000000000E0L,*/ ++-5.139481484435370143617E2L, ++-3.403570840534304670537E4L, ++-6.227441164066219501697E5L, ++-4.814940379411882186630E6L, ++-1.785433287045078156959E7L, ++-3.138646407656182662088E7L, ++-2.099336717757895876142E7L, ++}; ++#endif ++#if IBMPC ++static short B[] = { ++0x9557,0x4995,0x0da1,0x873b,0xc00a, XPD ++0xfe44,0x9af8,0x5b8c,0xaa63,0xc00f, XPD ++0x5aa8,0x7cf5,0x3684,0x86ce,0xc013, XPD ++0x259a,0x258c,0xf206,0xba7f,0xc015, XPD ++0xbe18,0x1ca3,0xc0a0,0xf80a,0xc016, XPD ++0x168f,0x2c42,0x6717,0x98e3,0xc017, XPD ++0x2051,0x9d55,0x92c8,0x876e,0xc016, XPD ++}; ++static short C[] = { ++/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ ++0xaa77,0xcf2f,0xae76,0x807c,0xc008, XPD ++0xb280,0x0d74,0xb55a,0x84f3,0xc00e, XPD ++0xa505,0xcd30,0x81dc,0x9809,0xc012, XPD ++0x3369,0x4246,0xb8c2,0x92f0,0xc015, XPD ++0x63cf,0x6aee,0xbe6f,0x8837,0xc017, XPD ++0x26bb,0xccc7,0xb009,0xef75,0xc017, XPD ++0x462b,0xbae8,0xab96,0xa02a,0xc017, XPD ++}; ++#endif ++#if MIEEE ++static long B[21] = { ++0xc00a0000,0x873b0da1,0x49959557, ++0xc00f0000,0xaa635b8c,0x9af8fe44, ++0xc0130000,0x86ce3684,0x7cf55aa8, ++0xc0150000,0xba7ff206,0x258c259a, ++0xc0160000,0xf80ac0a0,0x1ca3be18, ++0xc0170000,0x98e36717,0x2c42168f, ++0xc0160000,0x876e92c8,0x9d552051, ++}; ++static long C[21] = { ++/*0x3fff0000,0x80000000,0x00000000,*/ ++0xc0080000,0x807cae76,0xcf2faa77, ++0xc00e0000,0x84f3b55a,0x0d74b280, ++0xc0120000,0x980981dc,0xcd30a505, ++0xc0150000,0x92f0b8c2,0x42463369, ++0xc0170000,0x8837be6f,0x6aee63cf, ++0xc0170000,0xef75b009,0xccc726bb, ++0xc0170000,0xa02aab96,0xbae8462b, ++}; ++#endif ++ ++/* log( sqrt( 2*pi ) ) */ ++static long double LS2PI = 0.91893853320467274178L; ++#define MAXLGM 1.04848146839019521116e+4928L ++ ++ ++/* Logarithm of gamma function */ ++ ++ ++long double lgammal(x) ++long double x; ++{ ++long double p, q, w, z, f, nx; ++int i; ++ ++signgam = 1; ++#ifdef NANS ++if( isnanl(x) ) ++ return(NANL); ++#endif ++#ifdef INFINITIES ++if( !isfinitel(x) ) ++ return(INFINITYL); ++#endif ++if( x < -34.0L ) ++ { ++ q = -x; ++ w = lgammal(q); /* note this modifies signgam! */ ++ p = floorl(q); ++ if( p == q ) ++ { ++#ifdef INFINITIES ++ mtherr( "lgammal", SING ); ++ return (INFINITYL); ++#else ++ goto loverf; ++#endif ++ } ++ i = p; ++ if( (i & 1) == 0 ) ++ signgam = -1; ++ else ++ signgam = 1; ++ z = q - p; ++ if( z > 0.5L ) ++ { ++ p += 1.0L; ++ z = p - q; ++ } ++ z = q * sinl( PIL * z ); ++ if( z == 0.0L ) ++ goto loverf; ++/* z = LOGPI - logl( z ) - w; */ *** DIFF OUTPUT TRUNCATED AT 1000 LINES ***
Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201207160022.q6G0M8nR087520>