Skip site navigation (1)Skip section navigation (2)
Date:      Wed, 22 Apr 2009 23:02:23 GMT
From:      Wen Heping <wenheping@gmail.com>
To:        freebsd-gnats-submit@FreeBSD.org
Subject:   ports/133932: [NEW PORT]science/py-mlpy:High performance Python package for predictive modeling
Message-ID:  <200904222302.n3MN2NX2061385@www.freebsd.org>
Resent-Message-ID: <200904222310.n3MNA16o085388@freefall.freebsd.org>

next in thread | raw e-mail | index | archive | help

>Number:         133932
>Category:       ports
>Synopsis:       [NEW PORT]science/py-mlpy:High performance Python package for predictive modeling
>Confidential:   no
>Severity:       non-critical
>Priority:       low
>Responsible:    freebsd-ports-bugs
>State:          open
>Quarter:        
>Keywords:       
>Date-Required:
>Class:          change-request
>Submitter-Id:   current-users
>Arrival-Date:   Wed Apr 22 23:10:00 UTC 2009
>Closed-Date:
>Last-Modified:
>Originator:     Wen Heping
>Release:        FreeBSD 8.0-CURRENT
>Organization:
ChangAn Middle School
>Environment:
FreeBSD fb8.wenjing.com 8.0-CURRENT FreeBSD 8.0-CURRENT #0: Sun Mar 22 22:12:06 CST 2009     root@fb8.wenjing.com:/usr/obj/usr/src/sys/GENERIC  i386
>Description:
Machine Learning PY (mlpy) is a high-performance Python package for
predictive modeling. It makes extensive use of numpy (http://scipy.org)
to provide fast N-dimensional array manipulation and easy integration of
C code. mlpy provides high level procedures that support, with few lines
of code, the design of rich Data Analysis Protocols (DAPs) for
preprocessing, clustering, predictive classification and feature
selection. Methods are available for feature weighting and ranking, data
resampling, error evaluation and experiment landscaping.The package
includes tools to measure stability in sets of ranked feature lists.

WWW:    http://mlpy.fbk.eu/
>How-To-Repeat:

>Fix:


Patch attached with submission follows:

# This is a shell archive.  Save it in a file, remove anything before
# this line, and then unpack it by entering "sh file".  Note, it may
# create directories; files and directories will be owned by you and
# have default permissions.
#
# This archive contains:
#
#	py-mlpy
#	py-mlpy/pkg-plist
#	py-mlpy/pkg-descr
#	py-mlpy/distinfo
#	py-mlpy/Makefile
#
echo c - py-mlpy
mkdir -p py-mlpy > /dev/null 2>&1
echo x - py-mlpy/pkg-plist
sed 's/^X//' >py-mlpy/pkg-plist << '622c4faa7b3c4dd5b7f4aef20790b5d1'
Xbin/irelief-sigma
Xbin/srda-landscape
Xbin/svm-landscape
Xbin/fda-landscape
Xbin/knn-landscape
Xbin/pda-landscape
Xbin/dlda-landscape
Xbin/borda
Xbin/canberra
Xbin/canberraq
X%%PYTHON_SITELIBDIR%%/mlpy/__init__.py
X%%PYTHON_SITELIBDIR%%/mlpy/__init__.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/__init__.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.py
X%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_bmetrics.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_borda.py
X%%PYTHON_SITELIBDIR%%/mlpy/_borda.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_borda.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_canberra.py
X%%PYTHON_SITELIBDIR%%/mlpy/_canberra.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_canberra.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_ci.py
X%%PYTHON_SITELIBDIR%%/mlpy/_ci.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_ci.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_cwt.py
X%%PYTHON_SITELIBDIR%%/mlpy/_cwt.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_cwt.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_data.py
X%%PYTHON_SITELIBDIR%%/mlpy/_data.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_data.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_dlda.py
X%%PYTHON_SITELIBDIR%%/mlpy/_dlda.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_dlda.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_dwt.so
X%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.py
X%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_dwtfs.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_fda.py
X%%PYTHON_SITELIBDIR%%/mlpy/_fda.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_fda.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.py
X%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_hcluster.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_irelief.py
X%%PYTHON_SITELIBDIR%%/mlpy/_irelief.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_irelief.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_knn.py
X%%PYTHON_SITELIBDIR%%/mlpy/_knn.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_knn.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_pda.py
X%%PYTHON_SITELIBDIR%%/mlpy/_pda.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_pda.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_ranking.py
X%%PYTHON_SITELIBDIR%%/mlpy/_ranking.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_ranking.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_resampling.py
X%%PYTHON_SITELIBDIR%%/mlpy/_resampling.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_resampling.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_srda.py
X%%PYTHON_SITELIBDIR%%/mlpy/_srda.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_srda.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_svm.py
X%%PYTHON_SITELIBDIR%%/mlpy/_svm.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_svm.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.py
X%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/_wavelet.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/canberracore.so
X%%PYTHON_SITELIBDIR%%/mlpy/cwb.so
X%%PYTHON_SITELIBDIR%%/mlpy/gslpy.so
X%%PYTHON_SITELIBDIR%%/mlpy/hccore.so
X%%PYTHON_SITELIBDIR%%/mlpy/nncore.so
X%%PYTHON_SITELIBDIR%%/mlpy/progressbar.py
X%%PYTHON_SITELIBDIR%%/mlpy/progressbar.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/progressbar.pyo
X%%PYTHON_SITELIBDIR%%/mlpy/svmcore.so
X%%PYTHON_SITELIBDIR%%/mlpy/version.py
X%%PYTHON_SITELIBDIR%%/mlpy/version.pyc
X%%PYTHON_SITELIBDIR%%/mlpy/version.pyo
X@dirrm %%PYTHON_SITELIBDIR%%/mlpy
622c4faa7b3c4dd5b7f4aef20790b5d1
echo x - py-mlpy/pkg-descr
sed 's/^X//' >py-mlpy/pkg-descr << '6a3da4c2f97db5504206d492a246456f'
XMachine Learning PY (mlpy) is a high-performance Python package for
Xpredictive modeling. It makes extensive use of numpy (http://scipy.org)
Xto provide fast N-dimensional array manipulation and easy integration of
XC code. mlpy provides high level procedures that support, with few lines
Xof code, the design of rich Data Analysis Protocols (DAPs) for
Xpreprocessing, clustering, predictive classification and feature
Xselection. Methods are available for feature weighting and ranking, data
Xresampling, error evaluation and experiment landscaping.The package
Xincludes tools to measure stability in sets of ranked feature lists.
X
XWWW:	http://mlpy.fbk.eu/
6a3da4c2f97db5504206d492a246456f
echo x - py-mlpy/distinfo
sed 's/^X//' >py-mlpy/distinfo << '97d00e5e4cd02f1cf497afb2b88e9001'
XMD5 (MLPY-2.0.0.tar.gz) = 2f2b33f97849cba7d469926a7724e770
XSHA256 (MLPY-2.0.0.tar.gz) = f58fd590df0c22310cda4e1770a3ea4a195c552c8e33db01c168d2d10bcebf74
XSIZE (MLPY-2.0.0.tar.gz) = 118326
97d00e5e4cd02f1cf497afb2b88e9001
echo x - py-mlpy/Makefile
sed 's/^X//' >py-mlpy/Makefile << '98353251af9745646ac4c359688bef48'
X# New ports collection makefile for:	py-mlpy
X# Date created:		18 April, 2009
X# Whom:			Wen Heping <wenheping@gmail.com>
X#
X# $FreeBSD$
X#
X
XPORTNAME=	mlpy
XPORTVERSION=	2.0.0
XCATEGORIES=	science python
XMASTER_SITES=	https://mlpy.fbk.eu/download/src/
XPKGNAMEPREFIX=	${PYTHON_PKGNAMEPREFIX}
XDISTNAME=	MLPY-${PORTVERSION}
X
XMAINTAINER=	wenheping@gmail.com
XCOMMENT=	High performance Python package for predictive modeling
X
XBUILD_DEPENDS=	${PYTHON_SITELIBDIR}/numpy:${PORTSDIR}/math/py-numpy
XRUN_DEPENDS=	${BUILD_DEPENDS}
XLIB_DEPENDS=	gsl.13:${PORTSDIR}/math/gsl
X
XCFLAGS+=	-I${LOCALBASE}/include
XLDFLAGS+=	-L${LOCALBASE}/lib
XMAKE_ENV+=	CFLAGS="${CFLAGS}" LDFLAGS="${LDFLAGS}"
XUSE_PYTHON=	yes
XUSE_PYDISTUTILS=	yes
XPYDISTUTILS_PKGNAME=	MLPY
X
X.include <bsd.port.mk>
98353251af9745646ac4c359688bef48
exit



>Release-Note:
>Audit-Trail:
>Unformatted:



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?200904222302.n3MN2NX2061385>