Skip site navigation (1)Skip section navigation (2)
Date:      Thu, 30 May 2013 04:49:27 +0000 (UTC)
From:      David Schultz <das@FreeBSD.org>
To:        src-committers@freebsd.org, svn-src-all@freebsd.org, svn-src-head@freebsd.org
Subject:   svn commit: r251121 - in head: include lib/msun lib/msun/man lib/msun/src
Message-ID:  <201305300449.r4U4nRqM012625@svn.freebsd.org>

next in thread | raw e-mail | index | archive | help
Author: das
Date: Thu May 30 04:49:26 2013
New Revision: 251121
URL: http://svnweb.freebsd.org/changeset/base/251121

Log:
  I'm happy to finally commit stephen@'s implementations of cacos,
  cacosh, casin, casinh, catan, and catanh. Thanks to stephen@ and bde@
  for working on these.
  
  Submitted by:	stephen@
  Reviewed by:	bde

Added:
  head/lib/msun/man/cacos.3   (contents, props changed)
  head/lib/msun/src/catrig.c   (contents, props changed)
  head/lib/msun/src/catrigf.c   (contents, props changed)
Modified:
  head/include/complex.h
  head/lib/msun/Makefile
  head/lib/msun/Symbol.map
  head/lib/msun/man/ccos.3
  head/lib/msun/man/ccosh.3
  head/lib/msun/man/complex.3

Modified: head/include/complex.h
==============================================================================
--- head/include/complex.h	Thu May 30 04:47:03 2013	(r251120)
+++ head/include/complex.h	Thu May 30 04:49:26 2013	(r251121)
@@ -63,9 +63,21 @@ __BEGIN_DECLS
 double		cabs(double complex);
 float		cabsf(float complex);
 long double	cabsl(long double complex);
+double complex	cacos(double complex);
+float complex	cacosf(float complex);
+double complex	cacosh(double complex);
+float complex	cacoshf(float complex);
 double		carg(double complex);
 float		cargf(float complex);
 long double	cargl(long double complex);
+double complex	casin(double complex);
+float complex	casinf(float complex);
+double complex	casinh(double complex);
+float complex	casinhf(float complex);
+double complex	catan(double complex);
+float complex	catanf(float complex);
+double complex	catanh(double complex);
+float complex	catanhf(float complex);
 double complex	ccos(double complex);
 float complex	ccosf(float complex);
 double complex	ccosh(double complex);

Modified: head/lib/msun/Makefile
==============================================================================
--- head/lib/msun/Makefile	Thu May 30 04:47:03 2013	(r251120)
+++ head/lib/msun/Makefile	Thu May 30 04:49:26 2013	(r251121)
@@ -105,7 +105,8 @@ COMMON_SRCS+=	e_acosl.c e_asinl.c e_atan
 .endif
 
 # C99 complex functions
-COMMON_SRCS+=	s_ccosh.c s_ccoshf.c s_cexp.c s_cexpf.c \
+COMMON_SRCS+=	catrig.c catrigf.c \
+	s_ccosh.c s_ccoshf.c s_cexp.c s_cexpf.c \
 	s_cimag.c s_cimagf.c s_cimagl.c \
 	s_conj.c s_conjf.c s_conjl.c \
 	s_cproj.c s_cprojf.c s_creal.c s_crealf.c s_creall.c \
@@ -126,7 +127,7 @@ SRCS=	${COMMON_SRCS} ${ARCH_SRCS}
 INCS+=	fenv.h math.h
 
 MAN=	acos.3 acosh.3 asin.3 asinh.3 atan.3 atan2.3 atanh.3 \
-	ceil.3 ccos.3 ccosh.3 cexp.3 \
+	ceil.3 cacos.3 ccos.3 ccosh.3 cexp.3 \
 	cimag.3 copysign.3 cos.3 cosh.3 csqrt.3 erf.3 exp.3 fabs.3 fdim.3 \
 	feclearexcept.3 feenableexcept.3 fegetenv.3 \
 	fegetround.3 fenv.3 floor.3 \
@@ -144,6 +145,9 @@ MLINKS+=atan.3 atanf.3 atan.3 atanl.3
 MLINKS+=atanh.3 atanhf.3
 MLINKS+=atan2.3 atan2f.3 atan2.3 atan2l.3 \
 	atan2.3 carg.3 atan2.3 cargf.3 atan2.3 cargl.3
+MLINKS+=cacos.3 cacosf.3 cacos.3 cacosh.3 cacos.3 cacoshf.3 \
+	cacos.3 casin.3 cacos.3 casinf.3 cacos.3 casinh.3 cacos.3 casinhf.3 \
+	cacos.3 catan.3 cacos.3 catanf.3 cacos.3 catanh.3 cacos.3 catanhf.3
 MLINKS+=ccos.3 ccosf.3 ccos.3 csin.3 ccos.3 csinf.3 ccos.3 ctan.3 ccos.3 ctanf.3
 MLINKS+=ccosh.3 ccoshf.3 ccosh.3 csinh.3 ccosh.3 csinhf.3 \
 	ccosh.3 ctanh.3 ccosh.3 ctanhf.3

Modified: head/lib/msun/Symbol.map
==============================================================================
--- head/lib/msun/Symbol.map	Thu May 30 04:47:03 2013	(r251120)
+++ head/lib/msun/Symbol.map	Thu May 30 04:49:26 2013	(r251121)
@@ -237,6 +237,18 @@ FBSD_1.3 {
 	fegetround;
 	fesetround;
 	fesetenv;
+	cacos;
+	cacosf;
+	cacosh;
+	cacoshf;
+	casin;
+	casinf;
+	casinh;
+	casinhf;
+	catan;
+	catanf;
+	catanh;
+	catanhf;
 	csin;
 	csinf;
 	csinh;

Added: head/lib/msun/man/cacos.3
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ head/lib/msun/man/cacos.3	Thu May 30 04:49:26 2013	(r251121)
@@ -0,0 +1,128 @@
+.\" Copyright (c) 2013 David Schultz <das@FreeBSD.org>
+.\" All rights reserved.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\"    notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\"    notice, this list of conditions and the following disclaimer in the
+.\"    documentation and/or other materials provided with the distribution.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+.\" SUCH DAMAGE.
+.\"
+.\" $FreeBSD$
+.\"
+.Dd May 27, 2013
+.Dt CACOS 3
+.Os
+.Sh NAME
+.Nm cacos ,
+.Nm cacosf ,
+.Nm cacosh ,
+.Nm cacoshf ,
+.Nm casin ,
+.Nm casinf
+.Nm casinh ,
+.Nm casinhf
+.Nm catan ,
+.Nm catanf
+.Nm catanh ,
+.Nm catanhf
+.Nd complex arc trigonometric and hyperbolic functions
+.Sh LIBRARY
+.Lb libm
+.Sh SYNOPSIS
+.In complex.h
+.Ft double complex
+.Fn cacos "double complex z"
+.Ft float complex
+.Fn cacosf "float complex z"
+.Ft double complex
+.Fn cacosh "double complex z"
+.Ft float complex
+.Fn cacoshf "float complex z"
+.Ft double complex
+.Fn casin "double complex z"
+.Ft float complex
+.Fn casinf "float complex z"
+.Ft double complex
+.Fn casinh "double complex z"
+.Ft float complex
+.Fn casinhf "float complex z"
+.Ft double complex
+.Fn catan "double complex z"
+.Ft float complex
+.Fn catanf "float complex z"
+.Ft double complex
+.Fn catanh "double complex z"
+.Ft float complex
+.Fn catanhf "float complex z"
+.Sh DESCRIPTION
+The
+.Fn cacos ,
+.Fn casin ,
+and
+.Fn catan
+functions compute the principal value of the inverse cosine, sine,
+and tangent of the complex number
+.Fa z ,
+respectively.
+The
+.Fn cacosh ,
+.Fn casinh ,
+and
+.Fn catanh
+functions compute the principal value of the inverse hyperbolic
+cosine, sine, and tangent.
+The
+.Fn cacosf ,
+.Fn casinf ,
+.Fn catanf
+.Fn cacoshf ,
+.Fn casinhf ,
+and
+.Fn catanhf
+functions perform the same operations in
+.Fa float
+precision.
+.Pp
+.ie '\*[.T]'utf8'
+.  ds Un \[cu]
+.el
+.  ds Un U
+.
+There is no universal convention for defining the principal values of
+these functions. The following table gives the branch cuts, and the
+corresponding ranges for the return values, adopted by the C language.
+.Bl -column ".Sy Function" ".Sy (-\*(If*I, -I) \*(Un (I, \*(If*I)" ".Sy [-\*(Pi/2*I, \*(Pi/2*I]"
+.It Sy Function Ta Sy Branch Cut(s) Ta Sy Range
+.It cacos Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [0, \*(Pi]
+.It casin Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2, \*(Pi/2]
+.It catan Ta (-\*(If*I, -i) \*(Un (I, \*(If*I) Ta [-\*(Pi/2, \*(Pi/2]
+.It cacosh Ta (-\*(If, 1) Ta [-\*(Pi*I, \*(Pi*I]
+.It casinh Ta (-\*(If*I, -i) \*(Un (I, \*(If*I) Ta [-\*(Pi/2*I, \*(Pi/2*I]
+.It catanh Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2*I, \*(Pi/2*I]
+.El
+.Sh SEE ALSO
+.Xr ccos 3 ,
+.Xr ccosh 3 ,
+.Xr complex 3 ,
+.Xr cos 3 ,
+.Xr math 3 ,
+.Xr sin 3 ,
+.Xr tan 3
+.Sh STANDARDS
+These functions conform to
+.St -isoC-99 .

Modified: head/lib/msun/man/ccos.3
==============================================================================
--- head/lib/msun/man/ccos.3	Thu May 30 04:47:03 2013	(r251120)
+++ head/lib/msun/man/ccos.3	Thu May 30 04:49:26 2013	(r251121)
@@ -69,6 +69,7 @@ functions perform the same operations in
 .Fa float
 precision.
 .Sh SEE ALSO
+.Xr cacos 3 ,
 .Xr ccosh 3 ,
 .Xr complex 3 ,
 .Xr cos 3 ,

Modified: head/lib/msun/man/ccosh.3
==============================================================================
--- head/lib/msun/man/ccosh.3	Thu May 30 04:47:03 2013	(r251120)
+++ head/lib/msun/man/ccosh.3	Thu May 30 04:49:26 2013	(r251121)
@@ -69,6 +69,7 @@ functions perform the same operations in
 .Fa float
 precision.
 .Sh SEE ALSO
+.Xr cacosh 3 ,
 .Xr ccos 3 ,
 .Xr complex 3 ,
 .Xr cosh 3 ,

Modified: head/lib/msun/man/complex.3
==============================================================================
--- head/lib/msun/man/complex.3	Thu May 30 04:47:03 2013	(r251120)
+++ head/lib/msun/man/complex.3	Thu May 30 04:49:26 2013	(r251121)
@@ -89,6 +89,12 @@ creal	compute the real part
 .\" Section 7.3.5-6 of ISO C99 standard
 .Ss Trigonometric and Hyperbolic Functions
 .Cl
+cacos	arc cosine
+cacosh	arc hyperbolic cosine
+casin	arc sine
+casinh	arc hyperbolic sine
+catan	arc tangent
+catanh	arc hyperbolic tangent
 ccos	cosine
 ccosh	hyperbolic cosine
 csin	sine
@@ -111,20 +117,8 @@ The
 functions described here conform to
 .St -isoC-99 .
 .Sh BUGS
-The inverse trigonometric and hyperbolic functions
-.Fn cacos ,
-.Fn cacosh ,
-.Fn casin ,
-.Fn casinh ,
-.Fn catan ,
-and
-.Fn catanh
-are not implemented.
-.Pp
 The logarithmic functions
 .Fn clog
-are not implemented.
-.Pp
-The power functions
+and the power functions
 .Fn cpow
 are not implemented.

Added: head/lib/msun/src/catrig.c
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ head/lib/msun/src/catrig.c	Thu May 30 04:49:26 2013	(r251121)
@@ -0,0 +1,643 @@
+/*-
+ * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <complex.h>
+#include <float.h>
+
+#include "math.h"
+#include "math_private.h"
+
+#undef isinf
+#define isinf(x)	(fabs(x) == INFINITY)
+#undef isnan
+#define isnan(x)	((x) != (x))
+#define	raise_inexact()	do { volatile float junk = 1 + tiny; } while(0)
+#undef signbit
+#define signbit(x)	(__builtin_signbit(x))
+
+/* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
+static const double
+A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
+B_crossover =		0.6417,			/* suggested by Hull et al */
+FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
+QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
+m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
+m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
+pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
+RECIP_EPSILON =		1 / DBL_EPSILON,
+SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
+SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
+SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
+
+static const volatile double
+pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
+static const volatile float
+tiny =			0x1p-100; 
+
+static double complex clog_for_large_values(double complex z);
+
+/*
+ * Testing indicates that all these functions are accurate up to 4 ULP.
+ * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
+ * The functions catan(h) are a little under 2 times slower than atanh.
+ *
+ * The code for casinh, casin, cacos, and cacosh comes first.  The code is
+ * rather complicated, and the four functions are highly interdependent.
+ *
+ * The code for catanh and catan comes at the end.  It is much simpler than
+ * the other functions, and the code for these can be disconnected from the
+ * rest of the code.
+ */
+
+/*
+ *			================================
+ *			| casinh, casin, cacos, cacosh |
+ *			================================
+ */
+
+/*
+ * The algorithm is very close to that in "Implementing the complex arcsine
+ * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
+ * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
+ * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
+ * http://dl.acm.org/citation.cfm?id=275324.
+ *
+ * Throughout we use the convention z = x + I*y.
+ *
+ * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
+ * where
+ * A = (|z+I| + |z-I|) / 2
+ * B = (|z+I| - |z-I|) / 2 = y/A
+ *
+ * These formulas become numerically unstable:
+ *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
+ *       is, Re(casinh(z)) is close to 0);
+ *   (b) for Im(casinh(z)) when z is close to either of the intervals
+ *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
+ *       close to PI/2).
+ *
+ * These numerical problems are overcome by defining
+ * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
+ * Then if A < A_crossover, we use
+ *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
+ *   A-1 = f(x, 1+y) + f(x, 1-y)
+ * and if B > B_crossover, we use
+ *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
+ *   A-y = f(x, y+1) + f(x, y-1)
+ * where without loss of generality we have assumed that x and y are
+ * non-negative.
+ *
+ * Much of the difficulty comes because the intermediate computations may
+ * produce overflows or underflows.  This is dealt with in the paper by Hull
+ * et al by using exception handling.  We do this by detecting when
+ * computations risk underflow or overflow.  The hardest part is handling the
+ * underflows when computing f(a, b).
+ *
+ * Note that the function f(a, b) does not appear explicitly in the paper by
+ * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
+ * function f(a, b) allows us to concentrate many of the clever tricks in this
+ * paper into one function.
+ */
+
+/*
+ * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
+ * Pass hypot(a, b) as the third argument.
+ */
+static inline double
+f(double a, double b, double hypot_a_b)
+{
+	if (b < 0)
+		return ((hypot_a_b - b) / 2);
+	if (b == 0)
+		return (a / 2);
+	return (a * a / (hypot_a_b + b) / 2);
+}
+
+/*
+ * All the hard work is contained in this function.
+ * x and y are assumed positive or zero, and less than RECIP_EPSILON.
+ * Upon return:
+ * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
+ * B_is_usable is set to 1 if the value of B is usable.
+ * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
+ * If returning sqrt_A2my2 has potential to result in an underflow, it is
+ * rescaled, and new_y is similarly rescaled.
+ */
+static inline void
+do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
+	     double *sqrt_A2my2, double *new_y)
+{
+	double R, S, A; /* A, B, R, and S are as in Hull et al. */
+	double Am1, Amy; /* A-1, A-y. */
+
+	R = hypot(x, y + 1); /* |z+I| */
+	S = hypot(x, y - 1); /* |z-I| */
+
+	/* A = (|z+I| + |z-I|) / 2 */
+	A = (R + S) / 2;
+	/*
+	 * Mathematically A >= 1.  There is a small chance that this will not
+	 * be so because of rounding errors.  So we will make certain it is
+	 * so.
+	 */
+	if (A < 1)
+		A = 1;
+
+	if (A < A_crossover) {
+		/*
+		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
+		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
+		 */
+		if (y == 1 && x < DBL_EPSILON*DBL_EPSILON / 128) {
+			/*
+			 * fp is of order x^2, and fm = x/2.
+			 * A = 1 (inexactly).
+			 */
+			*rx = sqrt(x);
+		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
+			/*
+			 * Underflow will not occur because
+			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
+			 */
+			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
+			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
+		} else if (y < 1) {
+			/*
+			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
+			 * A = 1 (inexactly).
+			 */
+			*rx = x / sqrt((1 - y) * (1 + y));
+		} else /* if (y > 1) */ {
+			/*
+			 * A-1 = y-1 (inexactly).
+			 */
+			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
+		}
+	} else {
+		*rx = log(A + sqrt(A * A - 1));
+	}
+
+	*new_y = y;
+
+	if (y < FOUR_SQRT_MIN) {
+		/*
+		 * Avoid a possible underflow caused by y/A.  For casinh this
+		 * would be legitimate, but will be picked up by invoking atan2
+		 * later on.  For cacos this would not be legitimate.
+		 */
+		*B_is_usable = 0;
+		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
+		*new_y = y * (2 / DBL_EPSILON);
+		return;
+	}
+
+	/* B = (|z+I| - |z-I|) / 2 = y/A */
+	*B = y / A;
+	*B_is_usable = 1;
+
+	if (*B > B_crossover) {
+		*B_is_usable = 0;
+		/*
+		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
+		 * sqrt_A2my2 = sqrt(Amy*(A+y))
+		 */
+		if (y == 1 && x < DBL_EPSILON / 128) {
+			/*
+			 * fp is of order x^2, and fm = x/2.
+			 * A = 1 (inexactly).
+			 */
+			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
+		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
+			/*
+			 * Underflow will not occur because
+			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
+			 * and
+			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
+			 */
+			Amy = f(x, y + 1, R) + f(x, y - 1, S);
+			*sqrt_A2my2 = sqrt(Amy * (A + y));
+		} else if (y > 1) {
+			/*
+			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
+			 * A = y (inexactly).
+			 *
+			 * y < RECIP_EPSILON.  So the following
+			 * scaling should avoid any underflow problems.
+			 */
+			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
+				sqrt((y + 1) * (y - 1));
+			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
+		} else /* if (y < 1) */ {
+			/*
+			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
+			 * A = 1 (inexactly).
+			 */
+			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
+		}
+	}
+}
+
+/*
+ * casinh(z) = z + O(z^3)   as z -> 0
+ *
+ * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
+ * The above formula works for the imaginary part as well, because
+ * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
+ *    as z -> infinity, uniformly in y
+ */
+double complex
+casinh(double complex z)
+{
+	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
+	int B_is_usable;
+	double complex w;
+
+	x = creal(z);
+	y = cimag(z);
+	ax = fabs(x);
+	ay = fabs(y);
+
+	if (isnan(x) || isnan(y)) {
+		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
+		if (isinf(x))
+			return (cpack(x, y + y));
+		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
+		if (isinf(y))
+			return (cpack(y, x + x));
+		/* casinh(NaN + I*0) = NaN + I*0 */
+		if (y == 0)
+			return (cpack(x + x, y));
+		/*
+		 * All other cases involving NaN return NaN + I*NaN.
+		 * C99 leaves it optional whether to raise invalid if one of
+		 * the arguments is not NaN, so we opt not to raise it.
+		 */
+		/* Bruce Evans tells me this is the way to do this: */
+		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
+	}
+
+	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
+		/* clog...() will raise inexact unless x or y is infinite. */
+		if (signbit(x) == 0)
+			w = clog_for_large_values(z) + m_ln2;
+		else
+			w = clog_for_large_values(-z) + m_ln2;
+		return (cpack(copysign(creal(w), x), copysign(cimag(w), y)));
+	}
+
+	/* Avoid spuriously raising inexact for z = 0. */
+	if (x == 0 && y == 0)
+		return (z);
+
+	/* All remaining cases are inexact. */
+	raise_inexact();
+
+	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
+		return (z);
+
+	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
+	if (B_is_usable)
+		ry = asin(B);
+	else
+		ry = atan2(new_y, sqrt_A2my2);
+	return (cpack(copysign(rx, x), copysign(ry, y)));
+}
+
+/*
+ * casin(z) = reverse(casinh(reverse(z)))
+ * where reverse(x + I*y) = y + I*x = I*conj(z).
+ */
+double complex
+casin(double complex z)
+{
+	double complex w = casinh(cpack(cimag(z), creal(z)));
+	return (cpack(cimag(w), creal(w)));
+}
+
+/*
+ * cacos(z) = PI/2 - casin(z)
+ * but do the computation carefully so cacos(z) is accurate when z is
+ * close to 1.
+ *
+ * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
+ *
+ * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
+ * The above formula works for the real part as well, because
+ * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
+ *    as z -> infinity, uniformly in y
+ */
+double complex
+cacos(double complex z)
+{
+	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
+	int sx, sy;
+	int B_is_usable;
+	double complex w;
+
+	x = creal(z);
+	y = cimag(z);
+	sx = signbit(x);
+	sy = signbit(y);
+	ax = fabs(x);
+	ay = fabs(y);
+
+	if (isnan(x) || isnan(y)) {
+		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
+		if (isinf(x))
+			return (cpack(y + y, -INFINITY));
+		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
+		if (isinf(y))
+			return (cpack(x + x, -y));
+		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
+		if (x == 0)
+			return (cpack(pio2_hi + pio2_lo, y + y));
+		/*
+		 * All other cases involving NaN return NaN + I*NaN.
+		 * C99 leaves it optional whether to raise invalid if one of
+		 * the arguments is not NaN, so we opt not to raise it.
+		 */
+		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
+	}
+
+	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
+		/* clog...() will raise inexact unless x or y is infinite. */
+		w = clog_for_large_values(z);
+		rx = fabs(cimag(w));
+		ry = creal(w) + m_ln2;
+		if (sy == 0)
+			ry = -ry;
+		return (cpack(rx, ry));
+	}
+
+	/* Avoid spuriously raising inexact for z = 1. */
+	if (x == 1 && y == 0)
+		return (cpack(0, -y));
+
+	/* All remaining cases are inexact. */
+	raise_inexact();
+
+	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON/4)
+		return (cpack(pio2_hi - (x - pio2_lo), -y));
+
+	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
+	if (B_is_usable) {
+		if (sx==0)
+			rx = acos(B);
+		else
+			rx = acos(-B);
+	} else {
+		if (sx==0)
+			rx = atan2(sqrt_A2mx2, new_x);
+		else
+			rx = atan2(sqrt_A2mx2, -new_x);
+	}
+	if (sy == 0)
+		ry = -ry;
+	return (cpack(rx, ry));
+}
+
+/*
+ * cacosh(z) = I*cacos(z) or -I*cacos(z)
+ * where the sign is chosen so Re(cacosh(z)) >= 0.
+ */
+double complex
+cacosh(double complex z)
+{
+	double complex w;
+	double rx, ry;
+
+	w = cacos(z);
+	rx = creal(w);
+	ry = cimag(w);
+	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
+	if (isnan(rx) && isnan(ry))
+		return (cpack(ry, rx));
+	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
+	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
+	if (isnan(rx))
+		return (cpack(fabs(ry), rx));
+	/* cacosh(0 + I*NaN) = NaN + I*NaN */
+	if (isnan(ry))
+		return (cpack(ry, ry));
+	return (cpack(fabs(ry), copysign(rx, cimag(z))));
+}
+
+/*
+ * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
+ */
+static double complex
+clog_for_large_values(double complex z)
+{
+	double x, y;
+	double ax, ay, t;
+
+	x = creal(z);
+	y = cimag(z);
+	ax = fabs(x);
+	ay = fabs(y);
+	if (ax < ay) {
+		t = ax;
+		ax = ay;
+		ay = t;
+	}
+
+	/*
+	 * Avoid overflow in hypot() when x and y are both very large.
+	 * Divide x and y by E, and then add 1 to the logarithm.  This depends
+	 * on E being larger than sqrt(2).
+	 * Dividing by E causes an insignificant loss of accuracy; however
+	 * this method is still poor since it is uneccessarily slow.
+	 */
+	if (ax > DBL_MAX / 2)
+		return (cpack(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
+
+	/*
+	 * Avoid overflow when x or y is large.  Avoid underflow when x or
+	 * y is small.
+	 */
+	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
+		return (cpack(log(hypot(x, y)), atan2(y, x)));
+
+	return (cpack(log(ax * ax + ay * ay) / 2, atan2(y, x)));
+}
+
+/*
+ *=============================================================================
+ */
+
+/*
+ *				=================
+ *				| catanh, catan |
+ *				=================
+ */
+
+/*
+ * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
+ * Assumes x*x and y*y will not overflow.
+ * Assumes x and y are finite.
+ * Assumes y is non-negative.
+ * Assumes fabs(x) >= DBL_EPSILON.
+ */
+static inline double
+sum_squares(double x, double y)
+{
+
+	/* Avoid underflow when y is small. */
+	if (y < SQRT_MIN)
+		return (x * x);
+	return (x * x + y * y);
+}
+
+/*
+ * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
+ * Assumes x and y are not NaN, and one of x and y is larger than
+ * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
+ * the code creal(1/z), because the imaginary part may produce an unwanted
+ * underflow.
+ * This is only called in a context where inexact is always raised before
+ * the call, so no effort is made to avoid or force inexact.
+ */
+static inline double
+real_part_reciprocal(double x, double y)
+{
+	double scale;
+	uint32_t hx, hy;
+	int32_t ix, iy;
+
+	/*
+	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
+	 * example 2.
+	 */
+	GET_HIGH_WORD(hx, x);
+	ix = hx & 0x7ff00000;
+	GET_HIGH_WORD(hy, y);
+	iy = hy & 0x7ff00000;
+#define	BIAS	(DBL_MAX_EXP - 1)
+/* XXX more guard digits are useful iff there is extra precision. */
+#define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
+	if (ix - iy >= CUTOFF << 20 || isinf(x))
+		return (1 / x);		/* +-Inf -> +-0 is special */
+	if (iy - ix >= CUTOFF << 20)
+		return (x / y / y);	/* should avoid double div, but hard */
+	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
+		return (x / (x * x + y * y));
+	scale = 1;
+	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
+	x *= scale;
+	y *= scale;
+	return (x / (x * x + y * y) * scale);
+}
+
+/*
+ * catanh(z) = log((1+z)/(1-z)) / 2
+ *           = log1p(4*x / |z-1|^2) / 4
+ *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
+ *
+ * catanh(z) = z + O(z^3)   as z -> 0
+ *
+ * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
+ * The above formula works for the real part as well, because
+ * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
+ *    as z -> infinity, uniformly in x
+ */
+double complex
+catanh(double complex z)
+{
+	double x, y, ax, ay, rx, ry;
+
+	x = creal(z);
+	y = cimag(z);
+	ax = fabs(x);
+	ay = fabs(y);
+
+	/* This helps handle many cases. */
+	if (y == 0 && ax <= 1)
+		return (cpack(atanh(x), y)); 
+
+	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
+	if (x == 0)
+		return (cpack(x, atan(y)));
+
+	if (isnan(x) || isnan(y)) {
+		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
+		if (isinf(x))
+			return (cpack(copysign(0, x), y + y));
+		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
+		if (isinf(y)) {
+			return (cpack(copysign(0, x),
+				      copysign(pio2_hi + pio2_lo, y)));
+		}
+		/*
+		 * All other cases involving NaN return NaN + I*NaN.
+		 * C99 leaves it optional whether to raise invalid if one of
+		 * the arguments is not NaN, so we opt not to raise it.
+		 */
+		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
+	}
+
+	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
+		return (cpack(real_part_reciprocal(x, y),
+			      copysign(pio2_hi + pio2_lo, y)));
+	}
+
+	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
+		/*
+		 * z = 0 was filtered out above.  All other cases must raise
+		 * inexact, but this is the only only that needs to do it
+		 * explicitly.
+		 */
+		raise_inexact();
+		return (z);
+	}
+
+	if (ax == 1 && ay < DBL_EPSILON)
+		rx = (log(ay) - m_ln2) / -2;
+	else
+		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
+
+	if (ax == 1)
+		ry = atan2(2, -ay) / 2;
+	else if (ay < DBL_EPSILON)
+		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
+	else
+		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
+
+	return (cpack(copysign(rx, x), copysign(ry, y)));
+}
+
+/*
+ * catan(z) = reverse(catanh(reverse(z)))
+ * where reverse(x + I*y) = y + I*x = I*conj(z).
+ */
+double complex
+catan(double complex z)
+{
+	double complex w = catanh(cpack(cimag(z), creal(z)));
+	return (cpack(cimag(w), creal(w)));
+}

Added: head/lib/msun/src/catrigf.c
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ head/lib/msun/src/catrigf.c	Thu May 30 04:49:26 2013	(r251121)
@@ -0,0 +1,388 @@
+/*-
+ * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * The algorithm is very close to that in "Implementing the complex arcsine
+ * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
+ * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
+ * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
+ * http://dl.acm.org/citation.cfm?id=275324.
+ *
+ * The code for catrig.c contains complete comments.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <complex.h>
+#include <float.h>
+
+#include "math.h"
+#include "math_private.h"
+
+#undef isinf
+#define isinf(x)	(fabsf(x) == INFINITY)
+#undef isnan
+#define isnan(x)	((x) != (x))
+#define	raise_inexact()	do { volatile float junk = 1 + tiny; } while(0)
+#undef signbit
+#define signbit(x)	(__builtin_signbitf(x))
+
+static const float
+A_crossover =		10,
+B_crossover =		0.6417,
+FOUR_SQRT_MIN =		0x1p-61,
+QUARTER_SQRT_MAX =	0x1p61,
+m_e =			2.7182818285e0,		/*  0xadf854.0p-22 */
+m_ln2 =			6.9314718056e-1,	/*  0xb17218.0p-24 */
+pio2_hi =		1.5707962513e0,		/*  0xc90fda.0p-23 */
+RECIP_EPSILON =		1 / FLT_EPSILON,
+SQRT_3_EPSILON =	5.9801995673e-4,	/*  0x9cc471.0p-34 */
+SQRT_6_EPSILON =	8.4572793338e-4,	/*  0xddb3d7.0p-34 */
+SQRT_MIN =		0x1p-63;
+
+static const volatile float
+pio2_lo =		7.5497899549e-8,	/*  0xa22169.0p-47 */
+tiny =			0x1p-100;
+
+static float complex clog_for_large_values(float complex z);
+
+static inline float
+f(float a, float b, float hypot_a_b)
+{
+	if (b < 0)
+		return ((hypot_a_b - b) / 2);
+	if (b == 0)
+		return (a / 2);
+	return (a * a / (hypot_a_b + b) / 2);
+}
+
+static inline void
+do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
+	     float *sqrt_A2my2, float *new_y)
+{
+	float R, S, A;

*** DIFF OUTPUT TRUNCATED AT 1000 LINES ***



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201305300449.r4U4nRqM012625>