Skip site navigation (1)Skip section navigation (2)
Date:      Wed, 15 Oct 2008 22:02:46 +0200
From:      Aniruddha <mailing_list@orange.nl>
To:        Jeremy Chadwick <koitsu@FreeBSD.org>
Cc:        pyunyh@gmail.com, freebsd-questions@FreeBSD.org
Subject:   Re: Under heavy load internet gets killed, only a reboot can bring it back up
Message-ID:  <1224100966.4199.6.camel@debian>
In-Reply-To: <20081015184951.GA84864@icarus.home.lan>
References:  <1224054780.4011.20.camel@debian> <20081015072630.GA70901@icarus.home.lan> <1224069478.4247.7.camel@debian> <20081015113101.GA76278@icarus.home.lan> <20081015120911.GI14769@cdnetworks.co.kr> <1224080661.5407.2.camel@debian> <20081015144302.GA80037@icarus.home.lan> <1224091596.4048.2.camel@debian> <20081015184951.GA84864@icarus.home.lan>

next in thread | previous in thread | raw e-mail | index | archive | help

--=-O2nhkhwd6nCYy5VILwTc
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

On Wed, 2008-10-15 at 11:49 -0700, Jeremy Chadwick wrote:
> How exactly did you download the URLs I gave you?
> 
> Can you show me what's on line 241 of if_msk.c?
> 
> A 'grep ^#include if_msk.c' for me returns lines which only include
> filenames surrounded with "" or <>.
 
 I downloaded the files this way:

wget
http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/dev/msk/if_msk.c?rev=1.34;content-type=text%2Fplain

Line 241 contains:

#include &lt;sys/cdefs.h&gt;

I've included the if_msk.c for reference.


-- 
Regards,

Aniruddha



--=-O2nhkhwd6nCYy5VILwTc
Content-Disposition: attachment; filename=if_msk.c
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; name="if_msk.c"; charset="utf-8"


   #[1]FreeBSD cvsweb

   [2]Skip site navigation (1)[3]Skip section navigation (2)

Header And Logo

   [4]FreeBSD 

Peripheral Links

     * Text Size: [5]Normal / [6]Large
     * [7]Donate
     * [8]Contact

Search

   ____________________  Search

Site Navigation

     * [9]Home
     * [10]About
     * [11]Get FreeBSD
     * [12]Documentation
     * [13]Community
     * [14]Developers
     * [15]Support

view

   [16][BACK] Return to [17]if_msk.c CVS log [TXT] [DIR] Up to
   [18][FreeBSD] / [19]src / [20]sys / [21]dev / [22]msk
     _________________________________________________________________

   File:  [23][FreeBSD] / [24]src / [25]sys / [26]dev / [27]msk /
   [28]if_msk.c
   Revision 1.34: [29]download - view: [30]text, [31]annotated -
   [32]select for diffs
   Tue Sep 30 04:52:30 2008 UTC (2 weeks, 1 day ago) by yongari
   Branches: [33]MAIN
   CVS tags: [34]HEAD
SVN rev 183486 on 2008-09-30 04:52:30Z by yongari

If mbuf is not writable get a writable copy before invoking
[35]m_pullup(9).

Tested by:      Garrett Cooper < yanefbsd <at> gmail dot com >
     _________________________________________________________________

/******************************************************************************
 *
 * Name   : sky2.c
 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
 * Version: $Revision: 1.23 $
 * Date   : $Date: 2005/12/22 09:04:11 $
 * Purpose: Main driver source file
 *
 *****************************************************************************/

/******************************************************************************
 *
 *      LICENSE:
 *      Copyright (C) Marvell International Ltd. and/or its affiliates
 *
 *      The computer program files contained in this folder ("Files")
 *      are provided to you under the BSD-type license terms provided
 *      below, and any use of such Files and any derivative works
 *      thereof created by you shall be governed by the following terms
 *      and conditions:
 *
 *      - Redistributions of source code must retain the above copyright
 *        notice, this list of conditions and the following disclaimer.
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials provided
 *        with the distribution.
 *      - Neither the name of Marvell nor the names of its contributors
 *        may be used to endorse or promote products derived from this
 *        software without specific prior written permission.
 *
 *      THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *      "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *      LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *      FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *      COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *      INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *      BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
 *      LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 *      HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 *      STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *      ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 *      OF THE POSSIBILITY OF SUCH DAMAGE.
 *      /LICENSE
 *
 *****************************************************************************/

/*-
 * Copyright (c) 1997, 1998, 1999, 2000
 *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */
/*-
 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*
 * Device driver for the Marvell Yukon II Ethernet controller.
 * Due to lack of documentation, this driver is based on the code from
 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/dev/msk/if_msk.c,v 1.34 2008/09/30 04:52:30 yongari
 Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>

#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>

#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include <dev/msk/if_mskreg.h>

MODULE_DEPEND(msk, pci, 1, 1, 1);
MODULE_DEPEND(msk, ether, 1, 1, 1);
MODULE_DEPEND(msk, miibus, 1, 1, 1);

/* "device miibus" required.  See GENERIC if you get errors here. */
#include "miibus_if.h"

/* Tunables. */
static int msi_disable = 0;
TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
static int legacy_intr = 0;
TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);

#define MSK_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)

/*
 * Devices supported by this driver.
 */
static struct msk_product {
        uint16_t        msk_vendorid;
        uint16_t        msk_deviceid;
        const char      *msk_name;
} msk_products[] = {
        { VENDORID_SK, DEVICEID_SK_YUKON2,
            "SK-9Sxx Gigabit Ethernet" },
        { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
            "SK-9Exx Gigabit Ethernet"},
        { VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
            "Marvell Yukon 88E8021CU Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8021X,
            "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
            "Marvell Yukon 88E8022CU Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8022X,
            "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
            "Marvell Yukon 88E8061CU Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8061X,
            "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
            "Marvell Yukon 88E8062CU Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8062X,
            "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8035,
            "Marvell Yukon 88E8035 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8036,
            "Marvell Yukon 88E8036 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8038,
            "Marvell Yukon 88E8038 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_8039,
            "Marvell Yukon 88E8039 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_4361,
            "Marvell Yukon 88E8050 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_4360,
            "Marvell Yukon 88E8052 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_4362,
            "Marvell Yukon 88E8053 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_4363,
            "Marvell Yukon 88E8055 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_4364,
            "Marvell Yukon 88E8056 Gigabit Ethernet" },
        { VENDORID_MARVELL, DEVICEID_MRVL_436A,
            "Marvell Yukon 88E8058 Gigabit Ethernet" },
        { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
            "D-Link 550SX Gigabit Ethernet" },
        { VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
            "D-Link 560T Gigabit Ethernet" }
};

static const char *model_name[] = {
        "Yukon XL",
        "Yukon EC Ultra",
        "Yukon Unknown",
        "Yukon EC",
        "Yukon FE"
};

static int mskc_probe(device_t);
static int mskc_attach(device_t);
static int mskc_detach(device_t);
static int mskc_shutdown(device_t);
static int mskc_setup_rambuffer(struct msk_softc *);
static int mskc_suspend(device_t);
static int mskc_resume(device_t);
static void mskc_reset(struct msk_softc *);

static int msk_probe(device_t);
static int msk_attach(device_t);
static int msk_detach(device_t);

static void msk_tick(void *);
static void msk_legacy_intr(void *);
static int msk_intr(void *);
static void msk_int_task(void *, int);
static void msk_intr_phy(struct msk_if_softc *);
static void msk_intr_gmac(struct msk_if_softc *);
static __inline void msk_rxput(struct msk_if_softc *);
static int msk_handle_events(struct msk_softc *);
static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
static void msk_intr_hwerr(struct msk_softc *);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void msk_fixup_rx(struct mbuf *);
#endif
static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_txeof(struct msk_if_softc *, int);
static int msk_encap(struct msk_if_softc *, struct mbuf **);
static void msk_tx_task(void *, int);
static void msk_start(struct ifnet *);
static int msk_ioctl(struct ifnet *, u_long, caddr_t);
static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
static void msk_set_rambuffer(struct msk_if_softc *);
static void msk_init(void *);
static void msk_init_locked(struct msk_if_softc *);
static void msk_stop(struct msk_if_softc *);
static void msk_watchdog(struct msk_if_softc *);
static int msk_mediachange(struct ifnet *);
static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
static void msk_phy_power(struct msk_softc *, int);
static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int msk_status_dma_alloc(struct msk_softc *);
static void msk_status_dma_free(struct msk_softc *);
static int msk_txrx_dma_alloc(struct msk_if_softc *);
static void msk_txrx_dma_free(struct msk_if_softc *);
static void *msk_jalloc(struct msk_if_softc *);
static void msk_jfree(void *, void *);
static int msk_init_rx_ring(struct msk_if_softc *);
static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
static void msk_init_tx_ring(struct msk_if_softc *);
static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
static int msk_newbuf(struct msk_if_softc *, int);
static int msk_jumbo_newbuf(struct msk_if_softc *, int);

static int msk_phy_readreg(struct msk_if_softc *, int, int);
static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
static int msk_miibus_readreg(device_t, int, int);
static int msk_miibus_writereg(device_t, int, int, int);
static void msk_miibus_statchg(device_t);
static void msk_link_task(void *, int);

static void msk_setmulti(struct msk_if_softc *);
static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
static void msk_setpromisc(struct msk_if_softc *);

static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);

static device_method_t mskc_methods[] = {
        /* Device interface */
        DEVMETHOD(device_probe,         mskc_probe),
        DEVMETHOD(device_attach,        mskc_attach),
        DEVMETHOD(device_detach,        mskc_detach),
        DEVMETHOD(device_suspend,       mskc_suspend),
        DEVMETHOD(device_resume,        mskc_resume),
        DEVMETHOD(device_shutdown,      mskc_shutdown),

        /* bus interface */
        DEVMETHOD(bus_print_child,      bus_generic_print_child),
        DEVMETHOD(bus_driver_added,     bus_generic_driver_added),

        { NULL, NULL }
};

static driver_t mskc_driver = {
        "mskc",
        mskc_methods,
        sizeof(struct msk_softc)
};

static devclass_t mskc_devclass;

static device_method_t msk_methods[] = {
        /* Device interface */
        DEVMETHOD(device_probe,         msk_probe),
        DEVMETHOD(device_attach,        msk_attach),
        DEVMETHOD(device_detach,        msk_detach),
        DEVMETHOD(device_shutdown,      bus_generic_shutdown),

        /* bus interface */
        DEVMETHOD(bus_print_child,      bus_generic_print_child),
        DEVMETHOD(bus_driver_added,     bus_generic_driver_added),

        /* MII interface */
        DEVMETHOD(miibus_readreg,       msk_miibus_readreg),
        DEVMETHOD(miibus_writereg,      msk_miibus_writereg),
        DEVMETHOD(miibus_statchg,       msk_miibus_statchg),

        { NULL, NULL }
};

static driver_t msk_driver = {
        "msk",
        msk_methods,
        sizeof(struct msk_if_softc)
};

static devclass_t msk_devclass;

DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);

static struct resource_spec msk_res_spec_io[] = {
        { SYS_RES_IOPORT,       PCIR_BAR(1),    RF_ACTIVE },
        { -1,                   0,              0 }
};

static struct resource_spec msk_res_spec_mem[] = {
        { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
        { -1,                   0,              0 }
};

static struct resource_spec msk_irq_spec_legacy[] = {
        { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
        { -1,                   0,              0 }
};

static struct resource_spec msk_irq_spec_msi[] = {
        { SYS_RES_IRQ,          1,              RF_ACTIVE },
        { -1,                   0,              0 }
};

static struct resource_spec msk_irq_spec_msi2[] = {
        { SYS_RES_IRQ,          1,              RF_ACTIVE },
        { SYS_RES_IRQ,          2,              RF_ACTIVE },
        { -1,                   0,              0 }
};

static int
msk_miibus_readreg(device_t dev, int phy, int reg)
{
        struct msk_if_softc *sc_if;

        if (phy != PHY_ADDR_MARV)
                return (0);

        sc_if = device_get_softc(dev);

        return (msk_phy_readreg(sc_if, phy, reg));
}

static int
msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
{
        struct msk_softc *sc;
        int i, val;

        sc = sc_if->msk_softc;

        GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
            GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

        for (i = 0; i < MSK_TIMEOUT; i++) {
                DELAY(1);
                val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
                if ((val & GM_SMI_CT_RD_VAL) != 0) {
                        val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
                        break;
                }
        }

        if (i == MSK_TIMEOUT) {
                if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
                val = 0;
        }

        return (val);
}

static int
msk_miibus_writereg(device_t dev, int phy, int reg, int val)
{
        struct msk_if_softc *sc_if;

        if (phy != PHY_ADDR_MARV)
                return (0);

        sc_if = device_get_softc(dev);

        return (msk_phy_writereg(sc_if, phy, reg, val));
}

static int
msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
{
        struct msk_softc *sc;
        int i;

        sc = sc_if->msk_softc;

        GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
            GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
        for (i = 0; i < MSK_TIMEOUT; i++) {
                DELAY(1);
                if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
                    GM_SMI_CT_BUSY) == 0)
                        break;
        }
        if (i == MSK_TIMEOUT)
                if_printf(sc_if->msk_ifp, "phy write timeout\n");

        return (0);
}

static void
msk_miibus_statchg(device_t dev)
{
        struct msk_if_softc *sc_if;

        sc_if = device_get_softc(dev);
        taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
}

static void
msk_link_task(void *arg, int pending)
{
        struct msk_softc *sc;
        struct msk_if_softc *sc_if;
        struct mii_data *mii;
        struct ifnet *ifp;
        uint32_t gmac;

        sc_if = (struct msk_if_softc *)arg;
        sc = sc_if->msk_softc;

        MSK_IF_LOCK(sc_if);

        mii = device_get_softc(sc_if->msk_miibus);
        ifp = sc_if->msk_ifp;
        if (mii == NULL || ifp == NULL) {
                MSK_IF_UNLOCK(sc_if);
                return;
        }

        if (mii->mii_media_status & IFM_ACTIVE) {
                if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
                        sc_if->msk_link = 1;
        } else
                sc_if->msk_link = 0;

        if (sc_if->msk_link != 0) {
                /* Enable Tx FIFO Underrun. */
                CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
                    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
                /*
                 * Because mii(4) notify msk(4) that it detected link status
                 * change, there is no need to enable automatic
                 * speed/flow-control/duplex updates.
                 */
                gmac = GM_GPCR_AU_ALL_DIS;
                switch (IFM_SUBTYPE(mii->mii_media_active)) {
                case IFM_1000_SX:
                case IFM_1000_T:
                        gmac |= GM_GPCR_SPEED_1000;
                        break;
                case IFM_100_TX:
                        gmac |= GM_GPCR_SPEED_100;
                        break;
                case IFM_10_T:
                        break;
                }

                if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
                        gmac |= GM_GPCR_DUP_FULL;
                /* Disable Rx flow control. */
                if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
                        gmac |= GM_GPCR_FC_RX_DIS;
                /* Disable Tx flow control. */
                if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
                        gmac |= GM_GPCR_FC_TX_DIS;
                gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
                GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
                /* Read again to ensure writing. */
                GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);

                gmac = GMC_PAUSE_ON;
                if (((mii->mii_media_active & IFM_GMASK) &
                    (IFM_FLAG0 | IFM_FLAG1)) == 0)
                        gmac = GMC_PAUSE_OFF;
                /* Diable pause for 10/100 Mbps in half-duplex mode. */
                if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
                    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
                    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
                        gmac = GMC_PAUSE_OFF;
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);

                /* Enable PHY interrupt for FIFO underrun/overflow. */
                msk_phy_writereg(sc_if, PHY_ADDR_MARV,
                    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
        } else {
                /*
                 * Link state changed to down.
                 * Disable PHY interrupts.
                 */
                msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
                /* Disable Rx/Tx MAC. */
                gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
                gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
                GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
                /* Read again to ensure writing. */
                GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
        }

        MSK_IF_UNLOCK(sc_if);
}

static void
msk_setmulti(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        struct ifnet *ifp;
        struct ifmultiaddr *ifma;
        uint32_t mchash[2];
        uint32_t crc;
        uint16_t mode;

        sc = sc_if->msk_softc;

        MSK_IF_LOCK_ASSERT(sc_if);

        ifp = sc_if->msk_ifp;

        bzero(mchash, sizeof(mchash));
        mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
        mode |= GM_RXCR_UCF_ENA;
        if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
                if ((ifp->if_flags & IFF_PROMISC) != 0)
                        mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
                else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
                        mchash[0] = 0xffff;
                        mchash[1] = 0xffff;
                }
        } else {
                IF_ADDR_LOCK(ifp);
                TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
                        if (ifma->ifma_addr->sa_family != AF_LINK)
                                continue;
                        crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
                            ifma->ifma_addr), ETHER_ADDR_LEN);
                        /* Just want the 6 least significant bits. */
                        crc &= 0x3f;
                        /* Set the corresponding bit in the hash table. */
                        mchash[crc >> 5] |= 1 << (crc & 0x1f);
                }
                IF_ADDR_UNLOCK(ifp);
                mode |= GM_RXCR_MCF_ENA;
        }

        GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
            mchash[0] & 0xffff);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
            (mchash[0] >> 16) & 0xffff);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
            mchash[1] & 0xffff);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
            (mchash[1] >> 16) & 0xffff);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
}

static void
msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
{
        struct msk_softc *sc;

        sc = sc_if->msk_softc;
        if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
                    RX_VLAN_STRIP_ON);
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
                    TX_VLAN_TAG_ON);
        } else {
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
                    RX_VLAN_STRIP_OFF);
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
                    TX_VLAN_TAG_OFF);
        }
}

static void
msk_setpromisc(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        struct ifnet *ifp;
        uint16_t mode;

        MSK_IF_LOCK_ASSERT(sc_if);

        sc = sc_if->msk_softc;
        ifp = sc_if->msk_ifp;

        mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
        if (ifp->if_flags & IFF_PROMISC)
                mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
        else
                mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
}

static int
msk_init_rx_ring(struct msk_if_softc *sc_if)
{
        struct msk_ring_data *rd;
        struct msk_rxdesc *rxd;
        int i, prod;

        MSK_IF_LOCK_ASSERT(sc_if);

        sc_if->msk_cdata.msk_rx_cons = 0;
        sc_if->msk_cdata.msk_rx_prod = 0;
        sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;

        rd = &sc_if->msk_rdata;
        bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
        prod = sc_if->msk_cdata.msk_rx_prod;
        for (i = 0; i < MSK_RX_RING_CNT; i++) {
                rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
                rxd->rx_m = NULL;
                rxd->rx_le = &rd->msk_rx_ring[prod];
                if (msk_newbuf(sc_if, prod) != 0)
                        return (ENOBUFS);
                MSK_INC(prod, MSK_RX_RING_CNT);
        }

        bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
            sc_if->msk_cdata.msk_rx_ring_map,
            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

        /* Update prefetch unit. */
        sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
        CSR_WRITE_2(sc_if->msk_softc,
            Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
            sc_if->msk_cdata.msk_rx_prod);

        return (0);
}

static int
msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
{
        struct msk_ring_data *rd;
        struct msk_rxdesc *rxd;
        int i, prod;

        MSK_IF_LOCK_ASSERT(sc_if);

        sc_if->msk_cdata.msk_rx_cons = 0;
        sc_if->msk_cdata.msk_rx_prod = 0;
        sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;

        rd = &sc_if->msk_rdata;
        bzero(rd->msk_jumbo_rx_ring,
            sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
        prod = sc_if->msk_cdata.msk_rx_prod;
        for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
                rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
                rxd->rx_m = NULL;
                rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
                if (msk_jumbo_newbuf(sc_if, prod) != 0)
                        return (ENOBUFS);
                MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
        }

        bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
            sc_if->msk_cdata.msk_jumbo_rx_ring_map,
            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

        sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
        CSR_WRITE_2(sc_if->msk_softc,
            Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
            sc_if->msk_cdata.msk_rx_prod);

        return (0);
}

static void
msk_init_tx_ring(struct msk_if_softc *sc_if)
{
        struct msk_ring_data *rd;
        struct msk_txdesc *txd;
        int i;

        sc_if->msk_cdata.msk_tso_mtu = 0;
        sc_if->msk_cdata.msk_tx_prod = 0;
        sc_if->msk_cdata.msk_tx_cons = 0;
        sc_if->msk_cdata.msk_tx_cnt = 0;

        rd = &sc_if->msk_rdata;
        bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
        for (i = 0; i < MSK_TX_RING_CNT; i++) {
                txd = &sc_if->msk_cdata.msk_txdesc[i];
                txd->tx_m = NULL;
                txd->tx_le = &rd->msk_tx_ring[i];
        }

        bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
            sc_if->msk_cdata.msk_tx_ring_map,
            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}

static __inline void
msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
{
        struct msk_rx_desc *rx_le;
        struct msk_rxdesc *rxd;
        struct mbuf *m;

        rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
        m = rxd->rx_m;
        rx_le = rxd->rx_le;
        rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}

static __inline void
msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
{
        struct msk_rx_desc *rx_le;
        struct msk_rxdesc *rxd;
        struct mbuf *m;

        rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
        m = rxd->rx_m;
        rx_le = rxd->rx_le;
        rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}

static int
msk_newbuf(struct msk_if_softc *sc_if, int idx)
{
        struct msk_rx_desc *rx_le;
        struct msk_rxdesc *rxd;
        struct mbuf *m;
        bus_dma_segment_t segs[1];
        bus_dmamap_t map;
        int nsegs;

        m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
        if (m == NULL)
                return (ENOBUFS);

        m->m_len = m->m_pkthdr.len = MCLBYTES;
        if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
                m_adj(m, ETHER_ALIGN);
#ifndef __NO_STRICT_ALIGNMENT
        else
                m_adj(m, MSK_RX_BUF_ALIGN);
#endif

        if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
            sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
            BUS_DMA_NOWAIT) != 0) {
                m_freem(m);
                return (ENOBUFS);
        }
        KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));

        rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
        if (rxd->rx_m != NULL) {
                bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
                    BUS_DMASYNC_POSTREAD);
                bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
        }
        map = rxd->rx_dmamap;
        rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
        sc_if->msk_cdata.msk_rx_sparemap = map;
        bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
            BUS_DMASYNC_PREREAD);
        rxd->rx_m = m;
        rx_le = rxd->rx_le;
        rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
        rx_le->msk_control =
            htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);

        return (0);
}

static int
msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
{
        struct msk_rx_desc *rx_le;
        struct msk_rxdesc *rxd;
        struct mbuf *m;
        bus_dma_segment_t segs[1];
        bus_dmamap_t map;
        int nsegs;
        void *buf;

        MGETHDR(m, M_DONTWAIT, MT_DATA);
        if (m == NULL)
                return (ENOBUFS);
        buf = msk_jalloc(sc_if);
        if (buf == NULL) {
                m_freem(m);
                return (ENOBUFS);
        }
        /* Attach the buffer to the mbuf. */
        MEXTADD(m, buf, MSK_JLEN, msk_jfree, buf,
            (struct msk_if_softc *)sc_if, 0, EXT_NET_DRV);
        if ((m->m_flags & M_EXT) == 0) {
                m_freem(m);
                return (ENOBUFS);
        }
        m->m_pkthdr.len = m->m_len = MSK_JLEN;
        if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
                m_adj(m, ETHER_ALIGN);
#ifndef __NO_STRICT_ALIGNMENT
        else
                m_adj(m, MSK_RX_BUF_ALIGN);
#endif

        if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
            sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
            BUS_DMA_NOWAIT) != 0) {
                m_freem(m);
                return (ENOBUFS);
        }
        KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));

        rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
        if (rxd->rx_m != NULL) {
                bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
                    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
                bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
                    rxd->rx_dmamap);
        }
        map = rxd->rx_dmamap;
        rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
        sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
        bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
            BUS_DMASYNC_PREREAD);
        rxd->rx_m = m;
        rx_le = rxd->rx_le;
        rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
        rx_le->msk_control =
            htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);

        return (0);
}

/*
 * Set media options.
 */
static int
msk_mediachange(struct ifnet *ifp)
{
        struct msk_if_softc *sc_if;
        struct mii_data *mii;

        sc_if = ifp->if_softc;

        MSK_IF_LOCK(sc_if);
        mii = device_get_softc(sc_if->msk_miibus);
        mii_mediachg(mii);
        MSK_IF_UNLOCK(sc_if);

        return (0);
}

/*
 * Report current media status.
 */
static void
msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
        struct msk_if_softc *sc_if;
        struct mii_data *mii;

        sc_if = ifp->if_softc;
        MSK_IF_LOCK(sc_if);
        mii = device_get_softc(sc_if->msk_miibus);

        mii_pollstat(mii);
        MSK_IF_UNLOCK(sc_if);
        ifmr->ifm_active = mii->mii_media_active;
        ifmr->ifm_status = mii->mii_media_status;
}

static int
msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
        struct msk_if_softc *sc_if;
        struct ifreq *ifr;
        struct mii_data *mii;
        int error, mask;

        sc_if = ifp->if_softc;
        ifr = (struct ifreq *)data;
        error = 0;

        switch(command) {
        case SIOCSIFMTU:
                if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
                        error = EINVAL;
                        break;
                }
                if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
                    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
                        error = EINVAL;
                        break;
                }
                MSK_IF_LOCK(sc_if);
                ifp->if_mtu = ifr->ifr_mtu;
                if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
                        msk_init_locked(sc_if);
                MSK_IF_UNLOCK(sc_if);
                break;
        case SIOCSIFFLAGS:
                MSK_IF_LOCK(sc_if);
                if ((ifp->if_flags & IFF_UP) != 0) {
                        if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
                                if (((ifp->if_flags ^ sc_if->msk_if_flags)
                                    & IFF_PROMISC) != 0) {
                                        msk_setpromisc(sc_if);
                                        msk_setmulti(sc_if);
                                }
                        } else {
                                if (sc_if->msk_detach == 0)
                                        msk_init_locked(sc_if);
                        }
                } else {
                        if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
                                msk_stop(sc_if);
                }
                sc_if->msk_if_flags = ifp->if_flags;
                MSK_IF_UNLOCK(sc_if);
                break;
        case SIOCADDMULTI:
        case SIOCDELMULTI:
                MSK_IF_LOCK(sc_if);
                if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
                        msk_setmulti(sc_if);
                MSK_IF_UNLOCK(sc_if);
                break;
        case SIOCGIFMEDIA:
        case SIOCSIFMEDIA:
                mii = device_get_softc(sc_if->msk_miibus);
                error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
                break;
        case SIOCSIFCAP:
                MSK_IF_LOCK(sc_if);
                mask = ifr->ifr_reqcap ^ ifp->if_capenable;
                if ((mask & IFCAP_TXCSUM) != 0) {
                        ifp->if_capenable ^= IFCAP_TXCSUM;
                        if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
                            (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
                                ifp->if_hwassist |= MSK_CSUM_FEATURES;
                        else
                                ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
                }
                if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
                        msk_setvlan(sc_if, ifp);
                }

                if ((mask & IFCAP_TSO4) != 0) {
                        ifp->if_capenable ^= IFCAP_TSO4;
                        if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
                            (IFCAP_TSO4 & ifp->if_capabilities) != 0)
                                ifp->if_hwassist |= CSUM_TSO;
                        else
                                ifp->if_hwassist &= ~CSUM_TSO;
                }
                if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
                    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
                        /*
                         * In Yukon EC Ultra, TSO & checksum offload is not
                         * supported for jumbo frame.
                         */
                        ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
                        ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
                }

                VLAN_CAPABILITIES(ifp);
                MSK_IF_UNLOCK(sc_if);
                break;
        default:
                error = ether_ioctl(ifp, command, data);
                break;
        }

        return (error);
}

static int
mskc_probe(device_t dev)
{
        struct msk_product *mp;
        uint16_t vendor, devid;
        int i;

        vendor = pci_get_vendor(dev);
        devid = pci_get_device(dev);
        mp = msk_products;
        for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
            i++, mp++) {
                if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
                        device_set_desc(dev, mp->msk_name);
                        return (BUS_PROBE_DEFAULT);
                }
        }

        return (ENXIO);
}

static int
mskc_setup_rambuffer(struct msk_softc *sc)
{
        int next;
        int i;

        /* Get adapter SRAM size. */
        sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
        if (bootverbose)
                device_printf(sc->msk_dev,
                    "RAM buffer size : %dKB\n", sc->msk_ramsize);
        if (sc->msk_ramsize == 0)
                return (0);

        sc->msk_pflags |= MSK_FLAG_RAMBUF;
        /*
         * Give receiver 2/3 of memory and round down to the multiple
         * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
         * of 1024.
         */
        sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
        sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
        for (i = 0, next = 0; i < sc->msk_num_port; i++) {
                sc->msk_rxqstart[i] = next;
                sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
                next = sc->msk_rxqend[i] + 1;
                sc->msk_txqstart[i] = next;
                sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
                next = sc->msk_txqend[i] + 1;
                if (bootverbose) {
                        device_printf(sc->msk_dev,
                            "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
                            sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
                            sc->msk_rxqend[i]);
                        device_printf(sc->msk_dev,
                            "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
                            sc->msk_txqsize / 1024, sc->msk_txqstart[i],
                            sc->msk_txqend[i]);
                }
        }

        return (0);
}

static void
msk_phy_power(struct msk_softc *sc, int mode)
{
        uint32_t val;
        int i;

        switch (mode) {
        case MSK_PHY_POWERUP:
                /* Switch power to VCC (WA for VAUX problem). */
                CSR_WRITE_1(sc, B0_POWER_CTRL,
                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
                /* Disable Core Clock Division, set Clock Select to 0. */
                CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);

                val = 0;
                if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
                    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
                        /* Enable bits are inverted. */
                        val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
                              Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
                              Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
                }
                /*
                 * Enable PCI & Core Clock, enable clock gating for both Links.
                 */
                CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);

                val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
                val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
                if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
                    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
                        /* Deassert Low Power for 1st PHY. */
                        val |= PCI_Y2_PHY1_COMA;
                        if (sc->msk_num_port > 1)
                                val |= PCI_Y2_PHY2_COMA;
                } else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
                        uint32_t our;

                        CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);

                        /* Enable all clocks. */
                        pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
                        our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
                        our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
                            PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
                        /* Set all bits to 0 except bits 15..12. */
                        pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
                        /* Set to default value. */
                        pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
                }
                /* Release PHY from PowerDown/COMA mode. */
                pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
                for (i = 0; i < sc->msk_num_port; i++) {
                        CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
                            GMLC_RST_SET);
                        CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
                            GMLC_RST_CLR);
                }
                break;
        case MSK_PHY_POWERDOWN:
                val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
                val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
                if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
                    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
                        val &= ~PCI_Y2_PHY1_COMA;
                        if (sc->msk_num_port > 1)
                                val &= ~PCI_Y2_PHY2_COMA;
                }
                pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);

                val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
                      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
                      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
                if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
                    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
                        /* Enable bits are inverted. */
                        val = 0;
                }
                /*
                 * Disable PCI & Core Clock, disable clock gating for
                 * both Links.
                 */
                CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
                CSR_WRITE_1(sc, B0_POWER_CTRL,
                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
                break;
        default:
                break;
        }
}

static void
mskc_reset(struct msk_softc *sc)
{
        bus_addr_t addr;
        uint16_t status;
        uint32_t val;
        int i;

        CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);

        /* Disable ASF. */
        if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
                CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
                CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
        }
        /*
         * Since we disabled ASF, S/W reset is required for Power Management.
         */
        CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
        CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);

        /* Clear all error bits in the PCI status register. */
        status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
        CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);

        pci_write_config(sc->msk_dev, PCIR_STATUS, status |
            PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
            PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
        CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);

        switch (sc->msk_bustype) {
        case MSK_PEX_BUS:
                /* Clear all PEX errors. */
                CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
                val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
                if ((val & PEX_RX_OV) != 0) {
                        sc->msk_intrmask &= ~Y2_IS_HW_ERR;
                        sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
                }
                break;
        case MSK_PCI_BUS:
        case MSK_PCIX_BUS:
                /* Set Cache Line Size to 2(8bytes) if configured to 0. */
                val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
                if (val == 0)
                        pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
                if (sc->msk_bustype == MSK_PCIX_BUS) {
                        /* Set Cache Line Size opt. */
                        val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
                        val |= PCI_CLS_OPT;
                        pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
                }
                break;
        }
        /* Set PHY power state. */
        msk_phy_power(sc, MSK_PHY_POWERUP);

        /* Reset GPHY/GMAC Control */
        for (i = 0; i < sc->msk_num_port; i++) {
                /* GPHY Control reset. */
                CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
                CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
                /* GMAC Control reset. */
                CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
                CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
                CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
        }
        CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);

        /* LED On. */
        CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);

        /* Clear TWSI IRQ. */
        CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);

        /* Turn off hardware timer. */
        CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
        CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);

        /* Turn off descriptor polling. */
        CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);

        /* Turn off time stamps. */
        CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
        CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);

        /* Configure timeout values. */
        for (i = 0; i < sc->msk_num_port; i++) {
                CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
                CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
                    MSK_RI_TO_53);
                CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
                    MSK_RI_TO_53);
        }

        /* Disable all interrupts. */
        CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
        CSR_READ_4(sc, B0_HWE_IMSK);
        CSR_WRITE_4(sc, B0_IMSK, 0);
        CSR_READ_4(sc, B0_IMSK);

        /*
         * On dual port PCI-X card, there is an problem where status
         * can be received out of order due to split transactions.
         */
        if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
                int pcix;
                uint16_t pcix_cmd;

                if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
                        pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
                        /* Clear Max Outstanding Split Transactions. */
                        pcix_cmd &= ~0x70;
                        CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
                        pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
                        CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
                }
        }
        if (sc->msk_bustype == MSK_PEX_BUS) {
                uint16_t v, width;

                v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
                /* Change Max. Read Request Size to 4096 bytes. */
                v &= ~PEX_DC_MAX_RRS_MSK;
                v |= PEX_DC_MAX_RD_RQ_SIZE(5);
                pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
                width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
                width = (width & PEX_LS_LINK_WI_MSK) >> 4;
                v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
                v = (v & PEX_LS_LINK_WI_MSK) >> 4;
                if (v != width)
                        device_printf(sc->msk_dev,
                            "negotiated width of link(x%d) != "
                            "max. width of link(x%d)\n", width, v);
        }

        /* Clear status list. */
        bzero(sc->msk_stat_ring,
            sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
        sc->msk_stat_cons = 0;
        bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
        CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
        CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
        /* Set the status list base address. */
        addr = sc->msk_stat_ring_paddr;
        CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
        CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
        /* Set the status list last index. */
        CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
        if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
            sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
                /* WA for dev. #4.3 */
                CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
                /* WA for dev. #4.18 */
                CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
                CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
        } else {
                CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
                CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
                if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
                    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
                        CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
                else
                        CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
                CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
        }
        /*
         * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
         */
        CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));

        /* Enable status unit. */
        CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);

        CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
        CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
        CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
}

static int
msk_probe(device_t dev)
{
        struct msk_softc *sc;
        char desc[100];

        sc = device_get_softc(device_get_parent(dev));
        /*
         * Not much to do here. We always know there will be
         * at least one GMAC present, and if there are two,
         * mskc_attach() will create a second device instance
         * for us.
         */
        snprintf(desc, sizeof(desc),
            "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
            model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
            sc->msk_hw_rev);
        device_set_desc_copy(dev, desc);

        return (BUS_PROBE_DEFAULT);
}

static int
msk_attach(device_t dev)
{
        struct msk_softc *sc;
        struct msk_if_softc *sc_if;
        struct ifnet *ifp;
        int i, port, error;
        uint8_t eaddr[6];

        if (dev == NULL)
                return (EINVAL);

        error = 0;
        sc_if = device_get_softc(dev);
        sc = device_get_softc(device_get_parent(dev));
        port = *(int *)device_get_ivars(dev);

        sc_if->msk_if_dev = dev;
        sc_if->msk_port = port;
        sc_if->msk_softc = sc;
        sc_if->msk_flags = sc->msk_pflags;
        sc->msk_if[port] = sc_if;
        /* Setup Tx/Rx queue register offsets. */
        if (port == MSK_PORT_A) {
                sc_if->msk_txq = Q_XA1;
                sc_if->msk_txsq = Q_XS1;
                sc_if->msk_rxq = Q_R1;
        } else {
                sc_if->msk_txq = Q_XA2;
                sc_if->msk_txsq = Q_XS2;
                sc_if->msk_rxq = Q_R2;
        }

        callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
        TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);

        if ((error = msk_txrx_dma_alloc(sc_if) != 0))
                goto fail;

        ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
        if (ifp == NULL) {
                device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
                error = ENOSPC;
                goto fail;
        }
        ifp->if_softc = sc_if;
        if_initname(ifp, device_get_name(dev), device_get_unit(dev));
        ifp->if_mtu = ETHERMTU;
        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
        /*
         * IFCAP_RXCSUM capability is intentionally disabled as the hardware
         * has serious bug in Rx checksum offload for all Yukon II family
         * hardware. It seems there is a workaround to make it work somtimes.
         * However, the workaround also have to check OP code sequences to
         * verify whether the OP code is correct. Sometimes it should compute
         * IP/TCP/UDP checksum in driver in order to verify correctness of
         * checksum computed by hardware. If you have to compute checksum
         * with software to verify the hardware's checksum why have hardware
         * compute the checksum? I think there is no reason to spend time to
         * make Rx checksum offload work on Yukon II hardware.
         */
        ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
        ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
        ifp->if_capenable = ifp->if_capabilities;
        ifp->if_ioctl = msk_ioctl;
        ifp->if_start = msk_start;
        ifp->if_timer = 0;
        ifp->if_watchdog = NULL;
        ifp->if_init = msk_init;
        IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
        ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
        IFQ_SET_READY(&ifp->if_snd);

        TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);

        /*
         * Get station address for this interface. Note that
         * dual port cards actually come with three station
         * addresses: one for each port, plus an extra. The
         * extra one is used by the SysKonnect driver software
         * as a 'virtual' station address for when both ports
         * are operating in failover mode. Currently we don't
         * use this extra address.
         */
        MSK_IF_LOCK(sc_if);
        for (i = 0; i < ETHER_ADDR_LEN; i++)
                eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);

        /*
         * Call MI attach routine.  Can't hold locks when calling into ether_*.
         */
        MSK_IF_UNLOCK(sc_if);
        ether_ifattach(ifp, eaddr);
        MSK_IF_LOCK(sc_if);

        /*
         * VLAN capability setup
         * Due to Tx checksum offload hardware bugs, msk(4) manually
         * computes checksum for short frames. For VLAN tagged frames
         * this workaround does not work so disable checksum offload
         * for VLAN interface.
         */
        ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
        ifp->if_capenable = ifp->if_capabilities;

        /*
         * Tell the upper layer(s) we support long frames.
         * Must appear after the call to ether_ifattach() because
         * ether_ifattach() sets ifi_hdrlen to the default value.
         */
        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);

        sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
            ETHER_VLAN_ENCAP_LEN;

        /*
         * Do miibus setup.
         */
        MSK_IF_UNLOCK(sc_if);
        error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
            msk_mediastatus);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev, "no PHY found!\n");
                ether_ifdetach(ifp);
                error = ENXIO;
                goto fail;
        }

fail:
        if (error != 0) {
                /* Access should be ok even though lock has been dropped */
                sc->msk_if[port] = NULL;
                msk_detach(dev);
        }

        return (error);
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
static int
mskc_attach(device_t dev)
{
        struct msk_softc *sc;
        int error, msic, msir, *port, reg;

        sc = device_get_softc(dev);
        sc->msk_dev = dev;
        mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
            MTX_DEF);

        /*
         * Map control/status registers.
         */
        pci_enable_busmaster(dev);

        /* Allocate I/O resource */
#ifdef MSK_USEIOSPACE
        sc->msk_res_spec = msk_res_spec_io;
#else
        sc->msk_res_spec = msk_res_spec_mem;
#endif
        sc->msk_irq_spec = msk_irq_spec_legacy;
        error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
        if (error) {
                if (sc->msk_res_spec == msk_res_spec_mem)
                        sc->msk_res_spec = msk_res_spec_io;
                else
                        sc->msk_res_spec = msk_res_spec_mem;
                error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res)
;
                if (error) {
                        device_printf(dev, "couldn't allocate %s resources\n",
                            sc->msk_res_spec == msk_res_spec_mem ? "memory" :
                            "I/O");
                        mtx_destroy(&sc->msk_mtx);
                        return (ENXIO);
                }
        }

        CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
        sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
        sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
        /* Bail out if chip is not recognized. */
        if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
            sc->msk_hw_id > CHIP_ID_YUKON_FE) {
                device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
                    sc->msk_hw_id, sc->msk_hw_rev);
                mtx_destroy(&sc->msk_mtx);
                return (ENXIO);
        }

        SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
            SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
            OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
            &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
            "max number of Rx events to process");

        sc->msk_process_limit = MSK_PROC_DEFAULT;
        error = resource_int_value(device_get_name(dev), device_get_unit(dev),
            "process_limit", &sc->msk_process_limit);
        if (error == 0) {
                if (sc->msk_process_limit < MSK_PROC_MIN ||
                    sc->msk_process_limit > MSK_PROC_MAX) {
                        device_printf(dev, "process_limit value out of range; "
                            "using default: %d\n", MSK_PROC_DEFAULT);
                        sc->msk_process_limit = MSK_PROC_DEFAULT;
                }
        }

        /* Soft reset. */
        CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
        CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
        sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
         if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
                 sc->msk_coppertype = 0;
         else
                 sc->msk_coppertype = 1;
        /* Check number of MACs. */
        sc->msk_num_port = 1;
        if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
            CFG_DUAL_MAC_MSK) {
                if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
                        sc->msk_num_port++;
        }

        /* Check bus type. */
        if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
                sc->msk_bustype = MSK_PEX_BUS;
        else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
                sc->msk_bustype = MSK_PCIX_BUS;
        else
                sc->msk_bustype = MSK_PCI_BUS;

        switch (sc->msk_hw_id) {
        case CHIP_ID_YUKON_EC:
        case CHIP_ID_YUKON_EC_U:
                sc->msk_clock = 125;    /* 125 Mhz */
                break;
        case CHIP_ID_YUKON_FE:
                sc->msk_clock = 100;    /* 100 Mhz */
                break;
        case CHIP_ID_YUKON_XL:
                sc->msk_clock = 156;    /* 156 Mhz */
                break;
        default:
                sc->msk_clock = 156;    /* 156 Mhz */
                break;
        }

        /* Allocate IRQ resources. */
        msic = pci_msi_count(dev);
        if (bootverbose)
                device_printf(dev, "MSI count : %d\n", msic);
        /*
         * The Yukon II reports it can handle two messages, one for each
         * possible port.  We go ahead and allocate two messages and only
         * setup a handler for both if we have a dual port card.
         *
         * XXX: I haven't untangled the interrupt handler to handle dual
         * port cards with separate MSI messages, so for now I disable MSI
         * on dual port cards.
         */
        if (legacy_intr != 0)
                msi_disable = 1;
        if (msi_disable == 0) {
                switch (msic) {
                case 2:
                case 1: /* 88E8058 reports 1 MSI message */
                        msir = msic;
                        if (sc->msk_num_port == 1 &&
                            pci_alloc_msi(dev, &msir) == 0) {
                                if (msic == msir) {
                                        sc->msk_msi = 1;
                                        sc->msk_irq_spec = msic == 2 ?
                                            msk_irq_spec_msi2 :
                                            msk_irq_spec_msi;
                                } else
                                        pci_release_msi(dev);
                        }
                        break;
                default:
                        device_printf(dev,
                            "Unexpected number of MSI messages : %d\n", msic);
                        break;
                }
        }

        error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
        if (error) {
                device_printf(dev, "couldn't allocate IRQ resources\n");
                goto fail;
        }

        if ((error = msk_status_dma_alloc(sc)) != 0)
                goto fail;

        /* Set base interrupt mask. */
        sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
        sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
            Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;

        /* Reset the adapter. */
        mskc_reset(sc);

        if ((error = mskc_setup_rambuffer(sc)) != 0)
                goto fail;

        sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
        if (sc->msk_devs[MSK_PORT_A] == NULL) {
                device_printf(dev, "failed to add child for PORT_A\n");
                error = ENXIO;
                goto fail;
        }
        port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
        if (port == NULL) {
                device_printf(dev, "failed to allocate memory for "
                    "ivars of PORT_A\n");
                error = ENXIO;
                goto fail;
        }
        *port = MSK_PORT_A;
        device_set_ivars(sc->msk_devs[MSK_PORT_A], port);

        if (sc->msk_num_port > 1) {
                sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
                if (sc->msk_devs[MSK_PORT_B] == NULL) {
                        device_printf(dev, "failed to add child for PORT_B\n");
                        error = ENXIO;
                        goto fail;
                }
                port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
                if (port == NULL) {
                        device_printf(dev, "failed to allocate memory for "
                            "ivars of PORT_B\n");
                        error = ENXIO;
                        goto fail;
                }
                *port = MSK_PORT_B;
                device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
        }

        error = bus_generic_attach(dev);
        if (error) {
                device_printf(dev, "failed to attach port(s)\n");
                goto fail;
        }

        /* Hook interrupt last to avoid having to lock softc. */
        if (legacy_intr)
                error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
                    INTR_MPSAFE, NULL, msk_legacy_intr, sc,
                    &sc->msk_intrhand[0]);
        else {
                TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
                sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
                    taskqueue_thread_enqueue, &sc->msk_tq);
                taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
                    device_get_nameunit(sc->msk_dev));
                error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
                    INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
        }

        if (error != 0) {
                device_printf(dev, "couldn't set up interrupt handler\n");
                if (legacy_intr == 0)
                        taskqueue_free(sc->msk_tq);
                sc->msk_tq = NULL;
                goto fail;
        }
fail:
        if (error != 0)
                mskc_detach(dev);

        return (error);
}

/*
 * Shutdown hardware and free up resources. This can be called any
 * time after the mutex has been initialized. It is called in both
 * the error case in attach and the normal detach case so it needs
 * to be careful about only freeing resources that have actually been
 * allocated.
 */
static int
msk_detach(device_t dev)
{
        struct msk_softc *sc;
        struct msk_if_softc *sc_if;
        struct ifnet *ifp;

        sc_if = device_get_softc(dev);
        KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
            ("msk mutex not initialized in msk_detach"));
        MSK_IF_LOCK(sc_if);

        ifp = sc_if->msk_ifp;
        if (device_is_attached(dev)) {
                /* XXX */
                sc_if->msk_detach = 1;
                msk_stop(sc_if);
                /* Can't hold locks while calling detach. */
                MSK_IF_UNLOCK(sc_if);
                callout_drain(&sc_if->msk_tick_ch);
                taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
                taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
                ether_ifdetach(ifp);
                MSK_IF_LOCK(sc_if);
        }

        /*
         * We're generally called from mskc_detach() which is using
         * device_delete_child() to get to here. It's already trashed
         * miibus for us, so don't do it here or we'll panic.
         *
         * if (sc_if->msk_miibus != NULL) {
         *      device_delete_child(dev, sc_if->msk_miibus);
         *      sc_if->msk_miibus = NULL;
         * }
         */

        msk_txrx_dma_free(sc_if);
        bus_generic_detach(dev);

        if (ifp)
                if_free(ifp);
        sc = sc_if->msk_softc;
        sc->msk_if[sc_if->msk_port] = NULL;
        MSK_IF_UNLOCK(sc_if);

        return (0);
}

static int
mskc_detach(device_t dev)
{
        struct msk_softc *sc;

        sc = device_get_softc(dev);
        KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));

        if (device_is_alive(dev)) {
                if (sc->msk_devs[MSK_PORT_A] != NULL) {
                        free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
                            M_DEVBUF);
                        device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
                }
                if (sc->msk_devs[MSK_PORT_B] != NULL) {
                        free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
                            M_DEVBUF);
                        device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
                }
                bus_generic_detach(dev);
        }

        /* Disable all interrupts. */
        CSR_WRITE_4(sc, B0_IMSK, 0);
        CSR_READ_4(sc, B0_IMSK);
        CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
        CSR_READ_4(sc, B0_HWE_IMSK);

        /* LED Off. */
        CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);

        /* Put hardware reset. */
        CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);

        msk_status_dma_free(sc);

        if (legacy_intr == 0 && sc->msk_tq != NULL) {
                taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
                taskqueue_free(sc->msk_tq);
                sc->msk_tq = NULL;
        }
        if (sc->msk_intrhand[0]) {
                bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
                sc->msk_intrhand[0] = NULL;
        }
        if (sc->msk_intrhand[1]) {
                bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
                sc->msk_intrhand[1] = NULL;
        }
        bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
        if (sc->msk_msi)
                pci_release_msi(dev);
        bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
        mtx_destroy(&sc->msk_mtx);

        return (0);
}

struct msk_dmamap_arg {
        bus_addr_t      msk_busaddr;
};

static void
msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
        struct msk_dmamap_arg *ctx;

        if (error != 0)
                return;
        ctx = arg;
        ctx->msk_busaddr = segs[0].ds_addr;
}

/* Create status DMA region. */
static int
msk_status_dma_alloc(struct msk_softc *sc)
{
        struct msk_dmamap_arg ctx;
        int error;

        error = bus_dma_tag_create(
                    bus_get_dma_tag(sc->msk_dev),       /* parent */
                    MSK_STAT_ALIGN, 0,          /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_STAT_RING_SZ,           /* maxsize */
                    1,                          /* nsegments */
                    MSK_STAT_RING_SZ,           /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc->msk_stat_tag);
        if (error != 0) {
                device_printf(sc->msk_dev,
                    "failed to create status DMA tag\n");
                return (error);
        }

        /* Allocate DMA'able memory and load the DMA map for status ring. */
        error = bus_dmamem_alloc(sc->msk_stat_tag,
            (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
            BUS_DMA_ZERO, &sc->msk_stat_map);
        if (error != 0) {
                device_printf(sc->msk_dev,
                    "failed to allocate DMA'able memory for status ring\n");
                return (error);
        }

        ctx.msk_busaddr = 0;
        error = bus_dmamap_load(sc->msk_stat_tag,
            sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
            msk_dmamap_cb, &ctx, 0);
        if (error != 0) {
                device_printf(sc->msk_dev,
                    "failed to load DMA'able memory for status ring\n");
                return (error);
        }
        sc->msk_stat_ring_paddr = ctx.msk_busaddr;

        return (0);
}

static void
msk_status_dma_free(struct msk_softc *sc)
{

        /* Destroy status block. */
        if (sc->msk_stat_tag) {
                if (sc->msk_stat_map) {
                        bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
                        if (sc->msk_stat_ring) {
                                bus_dmamem_free(sc->msk_stat_tag,
                                    sc->msk_stat_ring, sc->msk_stat_map);
                                sc->msk_stat_ring = NULL;
                        }
                        sc->msk_stat_map = NULL;
                }
                bus_dma_tag_destroy(sc->msk_stat_tag);
                sc->msk_stat_tag = NULL;
        }
}

static int
msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
{
        struct msk_dmamap_arg ctx;
        struct msk_txdesc *txd;
        struct msk_rxdesc *rxd;
        struct msk_rxdesc *jrxd;
        struct msk_jpool_entry *entry;
        uint8_t *ptr;
        bus_size_t rxalign;
        int error, i;

        mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
        SLIST_INIT(&sc_if->msk_jfree_listhead);
        SLIST_INIT(&sc_if->msk_jinuse_listhead);

        /* Create parent DMA tag. */
        /*
         * XXX
         * It seems that Yukon II supports full 64bits DMA operations. But
         * it needs two descriptors(list elements) for 64bits DMA operations.
         * Since we don't know what DMA address mappings(32bits or 64bits)
         * would be used in advance for each mbufs, we limits its DMA space
         * to be in range of 32bits address space. Otherwise, we should check
         * what DMA address is used and chain another descriptor for the
         * 64bits DMA operation. This also means descriptor ring size is
         * variable. Limiting DMA address to be in 32bit address space greatly
         * simplyfies descriptor handling and possibly would increase
         * performance a bit due to efficient handling of descriptors.
         * Apart from harassing checksum offloading mechanisms, it seems
         * it's really bad idea to use a seperate descriptor for 64bit
         * DMA operation to save small descriptor memory. Anyway, I've
         * never seen these exotic scheme on ethernet interface hardware.
         */
        error = bus_dma_tag_create(
                    bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
                    1, 0,                       /* alignment, boundary */
                    BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
                    0,                          /* nsegments */
                    BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_parent_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create parent DMA tag\n");
                goto fail;
        }
        /* Create tag for Tx ring. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    MSK_RING_ALIGN, 0,          /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_TX_RING_SZ,             /* maxsize */
                    1,                          /* nsegments */
                    MSK_TX_RING_SZ,             /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_tx_ring_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create Tx ring DMA tag\n");
                goto fail;
        }

        /* Create tag for Rx ring. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    MSK_RING_ALIGN, 0,          /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_RX_RING_SZ,             /* maxsize */
                    1,                          /* nsegments */
                    MSK_RX_RING_SZ,             /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_rx_ring_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create Rx ring DMA tag\n");
                goto fail;
        }

        /* Create tag for jumbo Rx ring. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    MSK_RING_ALIGN, 0,          /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_JUMBO_RX_RING_SZ,       /* maxsize */
                    1,                          /* nsegments */
                    MSK_JUMBO_RX_RING_SZ,       /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create jumbo Rx ring DMA tag\n");
                goto fail;
        }

        /* Create tag for jumbo buffer blocks. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    PAGE_SIZE, 0,               /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_JMEM,                   /* maxsize */
                    1,                          /* nsegments */
                    MSK_JMEM,                   /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_jumbo_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create jumbo Rx buffer block DMA tag\n");
                goto fail;
        }

        /* Create tag for Tx buffers. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    1, 0,                       /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MSK_TSO_MAXSIZE,            /* maxsize */
                    MSK_MAXTXSEGS,              /* nsegments */
                    MSK_TSO_MAXSGSIZE,          /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_tx_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create Tx DMA tag\n");
                goto fail;
        }

        rxalign = 1;
        /*
         * Workaround hardware hang which seems to happen when Rx buffer
         * is not aligned on multiple of FIFO word(8 bytes).
         */
        if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
                rxalign = MSK_RX_BUF_ALIGN;
        /* Create tag for Rx buffers. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    rxalign, 0,                 /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MCLBYTES,                   /* maxsize */
                    1,                          /* nsegments */
                    MCLBYTES,                   /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_rx_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create Rx DMA tag\n");
                goto fail;
        }

        /* Create tag for jumbo Rx buffers. */
        error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
                    PAGE_SIZE, 0,               /* alignment, boundary */
                    BUS_SPACE_MAXADDR,          /* lowaddr */
                    BUS_SPACE_MAXADDR,          /* highaddr */
                    NULL, NULL,                 /* filter, filterarg */
                    MCLBYTES * MSK_MAXRXSEGS,   /* maxsize */
                    MSK_MAXRXSEGS,              /* nsegments */
                    MSK_JLEN,                   /* maxsegsize */
                    0,                          /* flags */
                    NULL, NULL,                 /* lockfunc, lockarg */
                    &sc_if->msk_cdata.msk_jumbo_rx_tag);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create jumbo Rx DMA tag\n");
                goto fail;
        }

        /* Allocate DMA'able memory and load the DMA map for Tx ring. */
        error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
            (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
            BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map)
;
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to allocate DMA'able memory for Tx ring\n");
                goto fail;
        }

        ctx.msk_busaddr = 0;
        error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
            sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
            MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to load DMA'able memory for Tx ring\n");
                goto fail;
        }
        sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;

        /* Allocate DMA'able memory and load the DMA map for Rx ring. */
        error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
            (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
            BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map)
;
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to allocate DMA'able memory for Rx ring\n");
                goto fail;
        }

        ctx.msk_busaddr = 0;
        error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
            sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
            MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to load DMA'able memory for Rx ring\n");
                goto fail;
        }
        sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;

        /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
        error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
            (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
            BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
            &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to allocate DMA'able memory for jumbo Rx ring\n");
                goto fail;
        }

        ctx.msk_busaddr = 0;
        error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
            sc_if->msk_cdata.msk_jumbo_rx_ring_map,
            sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
            msk_dmamap_cb, &ctx, 0);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to load DMA'able memory for jumbo Rx ring\n");
                goto fail;
        }
        sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;

        /* Create DMA maps for Tx buffers. */
        for (i = 0; i < MSK_TX_RING_CNT; i++) {
                txd = &sc_if->msk_cdata.msk_txdesc[i];
                txd->tx_m = NULL;
                txd->tx_dmamap = NULL;
                error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
                    &txd->tx_dmamap);
                if (error != 0) {
                        device_printf(sc_if->msk_if_dev,
                            "failed to create Tx dmamap\n");
                        goto fail;
                }
        }
        /* Create DMA maps for Rx buffers. */
        if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
            &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create spare Rx dmamap\n");
                goto fail;
        }
        for (i = 0; i < MSK_RX_RING_CNT; i++) {
                rxd = &sc_if->msk_cdata.msk_rxdesc[i];
                rxd->rx_m = NULL;
                rxd->rx_dmamap = NULL;
                error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
                    &rxd->rx_dmamap);
                if (error != 0) {
                        device_printf(sc_if->msk_if_dev,
                            "failed to create Rx dmamap\n");
                        goto fail;
                }
        }
        /* Create DMA maps for jumbo Rx buffers. */
        if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
            &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to create spare jumbo Rx dmamap\n");
                goto fail;
        }
        for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
                jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
                jrxd->rx_m = NULL;
                jrxd->rx_dmamap = NULL;
                error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
                    &jrxd->rx_dmamap);
                if (error != 0) {
                        device_printf(sc_if->msk_if_dev,
                            "failed to create jumbo Rx dmamap\n");
                        goto fail;
                }
        }

        /* Allocate DMA'able memory and load the DMA map for jumbo buf. */
        error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
            (void **)&sc_if->msk_rdata.msk_jumbo_buf,
            BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
            &sc_if->msk_cdata.msk_jumbo_map);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to allocate DMA'able memory for jumbo buf\n");
                goto fail;
        }

        ctx.msk_busaddr = 0;
        error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
            sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
            MSK_JMEM, msk_dmamap_cb, &ctx, 0);
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "failed to load DMA'able memory for jumbobuf\n");
                goto fail;
        }
        sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;

        /*
         * Now divide it up into 9K pieces and save the addresses
         * in an array.
         */
        ptr = sc_if->msk_rdata.msk_jumbo_buf;
        for (i = 0; i < MSK_JSLOTS; i++) {
                sc_if->msk_cdata.msk_jslots[i] = ptr;
                ptr += MSK_JLEN;
                entry = malloc(sizeof(struct msk_jpool_entry),
                    M_DEVBUF, M_WAITOK);
                if (entry == NULL) {
                        device_printf(sc_if->msk_if_dev,
                            "no memory for jumbo buffers!\n");
                        error = ENOMEM;
                        goto fail;
                }
                entry->slot = i;
                SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
                    jpool_entries);
        }

fail:
        return (error);
}

static void
msk_txrx_dma_free(struct msk_if_softc *sc_if)
{
        struct msk_txdesc *txd;
        struct msk_rxdesc *rxd;
        struct msk_rxdesc *jrxd;
        struct msk_jpool_entry *entry;
        int i;

        MSK_JLIST_LOCK(sc_if);
        while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
                device_printf(sc_if->msk_if_dev,
                    "asked to free buffer that is in use!\n");
                SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
                SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
                    jpool_entries);
        }

        while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
                entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
                SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
                free(entry, M_DEVBUF);
        }
        MSK_JLIST_UNLOCK(sc_if);

        /* Destroy jumbo buffer block. */
        if (sc_if->msk_cdata.msk_jumbo_map)
                bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
                    sc_if->msk_cdata.msk_jumbo_map);

        if (sc_if->msk_rdata.msk_jumbo_buf) {
                bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
                    sc_if->msk_rdata.msk_jumbo_buf,
                    sc_if->msk_cdata.msk_jumbo_map);
                sc_if->msk_rdata.msk_jumbo_buf = NULL;
                sc_if->msk_cdata.msk_jumbo_map = NULL;
        }

        /* Tx ring. */
        if (sc_if->msk_cdata.msk_tx_ring_tag) {
                if (sc_if->msk_cdata.msk_tx_ring_map)
                        bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
                            sc_if->msk_cdata.msk_tx_ring_map);
                if (sc_if->msk_cdata.msk_tx_ring_map &&
                    sc_if->msk_rdata.msk_tx_ring)
                        bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
                            sc_if->msk_rdata.msk_tx_ring,
                            sc_if->msk_cdata.msk_tx_ring_map);
                sc_if->msk_rdata.msk_tx_ring = NULL;
                sc_if->msk_cdata.msk_tx_ring_map = NULL;
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
                sc_if->msk_cdata.msk_tx_ring_tag = NULL;
        }
        /* Rx ring. */
        if (sc_if->msk_cdata.msk_rx_ring_tag) {
                if (sc_if->msk_cdata.msk_rx_ring_map)
                        bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
                            sc_if->msk_cdata.msk_rx_ring_map);
                if (sc_if->msk_cdata.msk_rx_ring_map &&
                    sc_if->msk_rdata.msk_rx_ring)
                        bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
                            sc_if->msk_rdata.msk_rx_ring,
                            sc_if->msk_cdata.msk_rx_ring_map);
                sc_if->msk_rdata.msk_rx_ring = NULL;
                sc_if->msk_cdata.msk_rx_ring_map = NULL;
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
                sc_if->msk_cdata.msk_rx_ring_tag = NULL;
        }
        /* Jumbo Rx ring. */
        if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
                if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
                        bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_ta
g,
                            sc_if->msk_cdata.msk_jumbo_rx_ring_map);
                if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
                    sc_if->msk_rdata.msk_jumbo_rx_ring)
                        bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
                            sc_if->msk_rdata.msk_jumbo_rx_ring,
                            sc_if->msk_cdata.msk_jumbo_rx_ring_map);
                sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
                sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
                sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
        }
        /* Tx buffers. */
        if (sc_if->msk_cdata.msk_tx_tag) {
                for (i = 0; i < MSK_TX_RING_CNT; i++) {
                        txd = &sc_if->msk_cdata.msk_txdesc[i];
                        if (txd->tx_dmamap) {
                                bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
                                    txd->tx_dmamap);
                                txd->tx_dmamap = NULL;
                        }
                }
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
                sc_if->msk_cdata.msk_tx_tag = NULL;
        }
        /* Rx buffers. */
        if (sc_if->msk_cdata.msk_rx_tag) {
                for (i = 0; i < MSK_RX_RING_CNT; i++) {
                        rxd = &sc_if->msk_cdata.msk_rxdesc[i];
                        if (rxd->rx_dmamap) {
                                bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
                                    rxd->rx_dmamap);
                                rxd->rx_dmamap = NULL;
                        }
                }
                if (sc_if->msk_cdata.msk_rx_sparemap) {
                        bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
                            sc_if->msk_cdata.msk_rx_sparemap);
                        sc_if->msk_cdata.msk_rx_sparemap = 0;
                }
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
                sc_if->msk_cdata.msk_rx_tag = NULL;
        }
        /* Jumbo Rx buffers. */
        if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
                for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
                        jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
                        if (jrxd->rx_dmamap) {
                                bus_dmamap_destroy(
                                    sc_if->msk_cdata.msk_jumbo_rx_tag,
                                    jrxd->rx_dmamap);
                                jrxd->rx_dmamap = NULL;
                        }
                }
                if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
                        bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
                            sc_if->msk_cdata.msk_jumbo_rx_sparemap);
                        sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
                }
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
                sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
        }

        if (sc_if->msk_cdata.msk_parent_tag) {
                bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
                sc_if->msk_cdata.msk_parent_tag = NULL;
        }
        mtx_destroy(&sc_if->msk_jlist_mtx);
}

/*
 * Allocate a jumbo buffer.
 */
static void *
msk_jalloc(struct msk_if_softc *sc_if)
{
        struct msk_jpool_entry *entry;

        MSK_JLIST_LOCK(sc_if);

        entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);

        if (entry == NULL) {
                MSK_JLIST_UNLOCK(sc_if);
                return (NULL);
        }

        SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
        SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);

        MSK_JLIST_UNLOCK(sc_if);

        return (sc_if->msk_cdata.msk_jslots[entry->slot]);
}

/*
 * Release a jumbo buffer.
 */
static void
msk_jfree(void *buf, void *args)
{
        struct msk_if_softc *sc_if;
        struct msk_jpool_entry *entry;
        int i;

        /* Extract the softc struct pointer. */
        sc_if = (struct msk_if_softc *)args;
        KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));

        MSK_JLIST_LOCK(sc_if);
        /* Calculate the slot this buffer belongs to. */
        i = ((vm_offset_t)buf
             - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
        KASSERT(i >= 0 && i < MSK_JSLOTS,
            ("%s: asked to free buffer that we don't manage!", __func__));

        entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
        KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
        entry->slot = i;
        SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
        SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
        if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
                wakeup(sc_if);

        MSK_JLIST_UNLOCK(sc_if);
}

static int
msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
{
        struct msk_txdesc *txd, *txd_last;
        struct msk_tx_desc *tx_le;
        struct mbuf *m;
        bus_dmamap_t map;
        bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
        uint32_t control, prod, si;
        uint16_t offset, tcp_offset, tso_mtu;
        int error, i, nseg, tso;

        MSK_IF_LOCK_ASSERT(sc_if);

        tcp_offset = offset = 0;
        m = *m_head;
        if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
                /*
                 * Since mbuf has no protocol specific structure information
                 * in it we have to inspect protocol information here to
                 * setup TSO and checksum offload. I don't know why Marvell
                 * made a such decision in chip design because other GigE
                 * hardwares normally takes care of all these chores in
                 * hardware. However, TSO performance of Yukon II is very
                 * good such that it's worth to implement it.
                 */
                struct ether_header *eh;
                struct ip *ip;
                struct tcphdr *tcp;

                if (M_WRITABLE(m) == 0) {
                        /* Get a writable copy. */
                        m = m_dup(*m_head, M_DONTWAIT);
                        m_freem(*m_head);
                        if (m == NULL) {
                                *m_head = NULL;
                                return (ENOBUFS);
                        }
                        *m_head = m;
                }

                offset = sizeof(struct ether_header);
                m = m_pullup(m, offset);
                if (m == NULL) {
                        *m_head = NULL;
                        return (ENOBUFS);
                }
                eh = mtod(m, struct ether_header *);
                /* Check if hardware VLAN insertion is off. */
                if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
                        offset = sizeof(struct ether_vlan_header);
                        m = m_pullup(m, offset);
                        if (m == NULL) {
                                *m_head = NULL;
                                return (ENOBUFS);
                        }
                }
                m = m_pullup(m, offset + sizeof(struct ip));
                if (m == NULL) {
                        *m_head = NULL;
                        return (ENOBUFS);
                }
                ip = (struct ip *)(mtod(m, char *) + offset);
                offset += (ip->ip_hl << 2);
                tcp_offset = offset;
                /*
                 * It seems that Yukon II has Tx checksum offload bug for
                 * small TCP packets that's less than 60 bytes in size
                 * (e.g. TCP window probe packet, pure ACK packet).
                 * Common work around like padding with zeros to make the
                 * frame minimum ethernet frame size didn't work at all.
                 * Instead of disabling checksum offload completely we
                 * resort to S/W checksum routine when we encounter short
                 * TCP frames.
                 * Short UDP packets appear to be handled correctly by
                 * Yukon II.
                 */
                if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
                    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
                        uint16_t csum;

                        m = m_pullup(m, offset + sizeof(struct tcphdr));
                        if (m == NULL) {
                                *m_head = NULL;
                                return (ENOBUFS);
                        }
                        csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
                            (ip->ip_hl << 2), offset);
                        *(uint16_t *)(m->m_data + offset +
                            m->m_pkthdr.csum_data) = csum;
                        m->m_pkthdr.csum_flags &= ~CSUM_TCP;
                }
                if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
                        m = m_pullup(m, offset + sizeof(struct tcphdr));
                        if (m == NULL) {
                                *m_head = NULL;
                                return (ENOBUFS);
                        }
                        tcp = (struct tcphdr *)(mtod(m, char *) + offset);
                        offset += (tcp->th_off << 2);
                }
                *m_head = m;
        }

        prod = sc_if->msk_cdata.msk_tx_prod;
        txd = &sc_if->msk_cdata.msk_txdesc[prod];
        txd_last = txd;
        map = txd->tx_dmamap;
        error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
            *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
        if (error == EFBIG) {
                m = m_collapse(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
                if (m == NULL) {
                        m_freem(*m_head);
                        *m_head = NULL;
                        return (ENOBUFS);
                }
                *m_head = m;
                error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
                    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
                if (error != 0) {
                        m_freem(*m_head);
                        *m_head = NULL;
                        return (error);
                }
        } else if (error != 0)
                return (error);
        if (nseg == 0) {
                m_freem(*m_head);
                *m_head = NULL;
                return (EIO);
        }

        /* Check number of available descriptors. */
        if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
            (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
                bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
                return (ENOBUFS);
        }

        control = 0;
        tso = 0;
        tx_le = NULL;

        /* Check TSO support. */
        if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
                tso_mtu = offset + m->m_pkthdr.tso_segsz;
                if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
                        tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
                        tx_le->msk_addr = htole32(tso_mtu);
                        tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
                        sc_if->msk_cdata.msk_tx_cnt++;
                        MSK_INC(prod, MSK_TX_RING_CNT);
                        sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
                }
                tso++;
        }
        /* Check if we have a VLAN tag to insert. */
        if ((m->m_flags & M_VLANTAG) != 0) {
                if (tso == 0) {
                        tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
                        tx_le->msk_addr = htole32(0);
                        tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
                            htons(m->m_pkthdr.ether_vtag));
                        sc_if->msk_cdata.msk_tx_cnt++;
                        MSK_INC(prod, MSK_TX_RING_CNT);
                } else {
                        tx_le->msk_control |= htole32(OP_VLAN |
                            htons(m->m_pkthdr.ether_vtag));
                }
                control |= INS_VLAN;
        }
        /* Check if we have to handle checksum offload. */
        if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
                tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
                tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
                    & 0xffff) | ((uint32_t)tcp_offset << 16));
                tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER))
;
                control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
                if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
                        control |= UDPTCP;
                sc_if->msk_cdata.msk_tx_cnt++;
                MSK_INC(prod, MSK_TX_RING_CNT);
        }

        si = prod;
        tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
        tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
        if (tso == 0)
                tx_le->msk_control = htole32(txsegs[0].ds_len | control |
                    OP_PACKET);
        else
                tx_le->msk_control = htole32(txsegs[0].ds_len | control |
                    OP_LARGESEND);
        sc_if->msk_cdata.msk_tx_cnt++;
        MSK_INC(prod, MSK_TX_RING_CNT);

        for (i = 1; i < nseg; i++) {
                tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
                tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
                tx_le->msk_control = htole32(txsegs[i].ds_len | control |
                    OP_BUFFER | HW_OWNER);
                sc_if->msk_cdata.msk_tx_cnt++;
                MSK_INC(prod, MSK_TX_RING_CNT);
        }
        /* Update producer index. */
        sc_if->msk_cdata.msk_tx_prod = prod;

        /* Set EOP on the last desciptor. */
        prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
        tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
        tx_le->msk_control |= htole32(EOP);

        /* Turn the first descriptor ownership to hardware. */
        tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
        tx_le->msk_control |= htole32(HW_OWNER);

        txd = &sc_if->msk_cdata.msk_txdesc[prod];
        map = txd_last->tx_dmamap;
        txd_last->tx_dmamap = txd->tx_dmamap;
        txd->tx_dmamap = map;
        txd->tx_m = m;

        /* Sync descriptors. */
        bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE)
;
        bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
            sc_if->msk_cdata.msk_tx_ring_map,
            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

        return (0);
}

static void
msk_tx_task(void *arg, int pending)
{
        struct ifnet *ifp;

        ifp = arg;
        msk_start(ifp);
}

static void
msk_start(struct ifnet *ifp)
{
        struct msk_if_softc *sc_if;
        struct mbuf *m_head;
        int enq;

        sc_if = ifp->if_softc;

        MSK_IF_LOCK(sc_if);

        if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
            IFF_DRV_RUNNING || sc_if->msk_link == 0) {
                MSK_IF_UNLOCK(sc_if);
                return;
        }

        for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
            sc_if->msk_cdata.msk_tx_cnt <
            (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
                IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
                if (m_head == NULL)
                        break;
                /*
                 * Pack the data into the transmit ring. If we
                 * don't have room, set the OACTIVE flag and wait
                 * for the NIC to drain the ring.
                 */
                if (msk_encap(sc_if, &m_head) != 0) {
                        if (m_head == NULL)
                                break;
                        IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
                        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
                        break;
                }

                enq++;
                /*
                 * If there's a BPF listener, bounce a copy of this frame
                 * to him.
                 */
                ETHER_BPF_MTAP(ifp, m_head);
        }

        if (enq > 0) {
                /* Transmit */
                CSR_WRITE_2(sc_if->msk_softc,
                    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
                    sc_if->msk_cdata.msk_tx_prod);

                /* Set a timeout in case the chip goes out to lunch. */
                sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
        }

        MSK_IF_UNLOCK(sc_if);
}

static void
msk_watchdog(struct msk_if_softc *sc_if)
{
        struct ifnet *ifp;
        uint32_t ridx;
        int idx;

        MSK_IF_LOCK_ASSERT(sc_if);

        if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
                return;
        ifp = sc_if->msk_ifp;
        if (sc_if->msk_link == 0) {
                if (bootverbose)
                        if_printf(sc_if->msk_ifp, "watchdog timeout "
                           "(missed link)\n");
                ifp->if_oerrors++;
                msk_init_locked(sc_if);
                return;
        }

        /*
         * Reclaim first as there is a possibility of losing Tx completion
         * interrupts.
         */
        ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
        idx = CSR_READ_2(sc_if->msk_softc, ridx);
        if (sc_if->msk_cdata.msk_tx_cons != idx) {
                msk_txeof(sc_if, idx);
                if (sc_if->msk_cdata.msk_tx_cnt == 0) {
                        if_printf(ifp, "watchdog timeout (missed Tx interrupts)
 "
                            "-- recovering\n");
                        if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
                                taskqueue_enqueue(taskqueue_fast,
                                    &sc_if->msk_tx_task);
                        return;
                }
        }

        if_printf(ifp, "watchdog timeout\n");
        ifp->if_oerrors++;
        msk_init_locked(sc_if);
        if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
                taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
}

static int
mskc_shutdown(device_t dev)
{
        struct msk_softc *sc;
        int i;

        sc = device_get_softc(dev);
        MSK_LOCK(sc);
        for (i = 0; i < sc->msk_num_port; i++) {
                if (sc->msk_if[i] != NULL)
                        msk_stop(sc->msk_if[i]);
        }

        /* Disable all interrupts. */
        CSR_WRITE_4(sc, B0_IMSK, 0);
        CSR_READ_4(sc, B0_IMSK);
        CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
        CSR_READ_4(sc, B0_HWE_IMSK);

        /* Put hardware reset. */
        CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);

        MSK_UNLOCK(sc);
        return (0);
}

static int
mskc_suspend(device_t dev)
{
        struct msk_softc *sc;
        int i;

        sc = device_get_softc(dev);

        MSK_LOCK(sc);

        for (i = 0; i < sc->msk_num_port; i++) {
                if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
                    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
                    IFF_DRV_RUNNING) != 0))
                        msk_stop(sc->msk_if[i]);
        }

        /* Disable all interrupts. */
        CSR_WRITE_4(sc, B0_IMSK, 0);
        CSR_READ_4(sc, B0_IMSK);
        CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
        CSR_READ_4(sc, B0_HWE_IMSK);

        msk_phy_power(sc, MSK_PHY_POWERDOWN);

        /* Put hardware reset. */
        CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
        sc->msk_suspended = 1;

        MSK_UNLOCK(sc);

        return (0);
}

static int
mskc_resume(device_t dev)
{
        struct msk_softc *sc;
        int i;

        sc = device_get_softc(dev);

        MSK_LOCK(sc);

        mskc_reset(sc);
        for (i = 0; i < sc->msk_num_port; i++) {
                if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
                    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
                        msk_init_locked(sc->msk_if[i]);
        }
        sc->msk_suspended = 0;

        MSK_UNLOCK(sc);

        return (0);
}

#ifndef __NO_STRICT_ALIGNMENT
static __inline void
msk_fixup_rx(struct mbuf *m)
{
        int i;
        uint16_t *src, *dst;

        src = mtod(m, uint16_t *);
        dst = src - 3;

        for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
                *dst++ = *src++;

        m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
}
#endif

static void
msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
        struct mbuf *m;
        struct ifnet *ifp;
        struct msk_rxdesc *rxd;
        int cons, rxlen;

        ifp = sc_if->msk_ifp;

        MSK_IF_LOCK_ASSERT(sc_if);

        cons = sc_if->msk_cdata.msk_rx_cons;
        do {
                rxlen = status >> 16;
                if ((status & GMR_FS_VLAN) != 0 &&
                    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
                        rxlen -= ETHER_VLAN_ENCAP_LEN;
                if (len > sc_if->msk_framesize ||
                    ((status & GMR_FS_ANY_ERR) != 0) ||
                    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
                        /* Don't count flow-control packet as errors. */
                        if ((status & GMR_FS_GOOD_FC) == 0)
                                ifp->if_ierrors++;
                        msk_discard_rxbuf(sc_if, cons);
                        break;
                }
                rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
                m = rxd->rx_m;
                if (msk_newbuf(sc_if, cons) != 0) {
                        ifp->if_iqdrops++;
                        /* Reuse old buffer. */
                        msk_discard_rxbuf(sc_if, cons);
                        break;
                }
                m->m_pkthdr.rcvif = ifp;
                m->m_pkthdr.len = m->m_len = len;
#ifndef __NO_STRICT_ALIGNMENT
                if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
                        msk_fixup_rx(m);
#endif
                ifp->if_ipackets++;
                /* Check for VLAN tagged packets. */
                if ((status & GMR_FS_VLAN) != 0 &&
                    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
                        m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
                        m->m_flags |= M_VLANTAG;
                }
                MSK_IF_UNLOCK(sc_if);
                (*ifp->if_input)(ifp, m);
                MSK_IF_LOCK(sc_if);
        } while (0);

        MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
        MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
}

static void
msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
        struct mbuf *m;
        struct ifnet *ifp;
        struct msk_rxdesc *jrxd;
        int cons, rxlen;

        ifp = sc_if->msk_ifp;

        MSK_IF_LOCK_ASSERT(sc_if);

        cons = sc_if->msk_cdata.msk_rx_cons;
        do {
                rxlen = status >> 16;
                if ((status & GMR_FS_VLAN) != 0 &&
                    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
                        rxlen -= ETHER_VLAN_ENCAP_LEN;
                if (len > sc_if->msk_framesize ||
                    ((status & GMR_FS_ANY_ERR) != 0) ||
                    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
                        /* Don't count flow-control packet as errors. */
                        if ((status & GMR_FS_GOOD_FC) == 0)
                                ifp->if_ierrors++;
                        msk_discard_jumbo_rxbuf(sc_if, cons);
                        break;
                }
                jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
                m = jrxd->rx_m;
                if (msk_jumbo_newbuf(sc_if, cons) != 0) {
                        ifp->if_iqdrops++;
                        /* Reuse old buffer. */
                        msk_discard_jumbo_rxbuf(sc_if, cons);
                        break;
                }
                m->m_pkthdr.rcvif = ifp;
                m->m_pkthdr.len = m->m_len = len;
#ifndef __NO_STRICT_ALIGNMENT
                if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
                        msk_fixup_rx(m);
#endif
                ifp->if_ipackets++;
                /* Check for VLAN tagged packets. */
                if ((status & GMR_FS_VLAN) != 0 &&
                    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
                        m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
                        m->m_flags |= M_VLANTAG;
                }
                MSK_IF_UNLOCK(sc_if);
                (*ifp->if_input)(ifp, m);
                MSK_IF_LOCK(sc_if);
        } while (0);

        MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
        MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
}

static void
msk_txeof(struct msk_if_softc *sc_if, int idx)
{
        struct msk_txdesc *txd;
        struct msk_tx_desc *cur_tx;
        struct ifnet *ifp;
        uint32_t control;
        int cons, prog;

        MSK_IF_LOCK_ASSERT(sc_if);

        ifp = sc_if->msk_ifp;

        bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
            sc_if->msk_cdata.msk_tx_ring_map,
            BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
        /*
         * Go through our tx ring and free mbufs for those
         * frames that have been sent.
         */
        cons = sc_if->msk_cdata.msk_tx_cons;
        prog = 0;
        for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
                if (sc_if->msk_cdata.msk_tx_cnt <= 0)
                        break;
                prog++;
                cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
                control = le32toh(cur_tx->msk_control);
                sc_if->msk_cdata.msk_tx_cnt--;
                ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
                if ((control & EOP) == 0)
                        continue;
                txd = &sc_if->msk_cdata.msk_txdesc[cons];
                bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
                    BUS_DMASYNC_POSTWRITE);
                bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);

                ifp->if_opackets++;
                KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
                    __func__));
                m_freem(txd->tx_m);
                txd->tx_m = NULL;
        }

        if (prog > 0) {
                sc_if->msk_cdata.msk_tx_cons = cons;
                if (sc_if->msk_cdata.msk_tx_cnt == 0)
                        sc_if->msk_watchdog_timer = 0;
                /* No need to sync LEs as we didn't update LEs. */
        }
}

static void
msk_tick(void *xsc_if)
{
        struct msk_if_softc *sc_if;
        struct mii_data *mii;

        sc_if = xsc_if;

        MSK_IF_LOCK_ASSERT(sc_if);

        mii = device_get_softc(sc_if->msk_miibus);

        mii_tick(mii);
        msk_watchdog(sc_if);
        callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}

static void
msk_intr_phy(struct msk_if_softc *sc_if)
{
        uint16_t status;

        msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
        status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
        /* Handle FIFO Underrun/Overflow? */
        if ((status & PHY_M_IS_FIFO_ERROR))
                device_printf(sc_if->msk_if_dev,
                    "PHY FIFO underrun/overflow.\n");
}

static void
msk_intr_gmac(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        uint8_t status;

        sc = sc_if->msk_softc;
        status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));

        /* GMAC Rx FIFO overrun. */
        if ((status & GM_IS_RX_FF_OR) != 0) {
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
                    GMF_CLI_RX_FO);
                device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
        }
        /* GMAC Tx FIFO underrun. */
        if ((status & GM_IS_TX_FF_UR) != 0) {
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
                    GMF_CLI_TX_FU);
                device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
                /*
                 * XXX
                 * In case of Tx underrun, we may need to flush/reset
                 * Tx MAC but that would also require resynchronization
                 * with status LEs. Reintializing status LEs would
                 * affect other port in dual MAC configuration so it
                 * should be avoided as possible as we can.
                 * Due to lack of documentation it's all vague guess but
                 * it needs more investigation.
                 */
        }
}

static void
msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
{
        struct msk_softc *sc;

        sc = sc_if->msk_softc;
        if ((status & Y2_IS_PAR_RD1) != 0) {
                device_printf(sc_if->msk_if_dev,
                    "RAM buffer read parity error\n");
                /* Clear IRQ. */
                CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
                    RI_CLR_RD_PERR);
        }
        if ((status & Y2_IS_PAR_WR1) != 0) {
                device_printf(sc_if->msk_if_dev,
                    "RAM buffer write parity error\n");
                /* Clear IRQ. */
                CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
                    RI_CLR_WR_PERR);
        }
        if ((status & Y2_IS_PAR_MAC1) != 0) {
                device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
                /* Clear IRQ. */
                CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
                    GMF_CLI_TX_PE);
        }
        if ((status & Y2_IS_PAR_RX1) != 0) {
                device_printf(sc_if->msk_if_dev, "Rx parity error\n");
                /* Clear IRQ. */
                CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR)
;
        }
        if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
                device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
                /* Clear IRQ. */
                CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP)
;
        }
}

static void
msk_intr_hwerr(struct msk_softc *sc)
{
        uint32_t status;
        uint32_t tlphead[4];

        status = CSR_READ_4(sc, B0_HWE_ISRC);
        /* Time Stamp timer overflow. */
        if ((status & Y2_IS_TIST_OV) != 0)
                CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
        if ((status & Y2_IS_PCI_NEXP) != 0) {
                /*
                 * PCI Express Error occured which is not described in PEX
                 * spec.
                 * This error is also mapped either to Master Abort(
                 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
                 * can only be cleared there.
                 */
                device_printf(sc->msk_dev,
                    "PCI Express protocol violation error\n");
        }

        if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
                uint16_t v16;

                if ((status & Y2_IS_MST_ERR) != 0)
                        device_printf(sc->msk_dev,
                            "unexpected IRQ Status error\n");
                else
                        device_printf(sc->msk_dev,
                            "unexpected IRQ Master error\n");
                /* Reset all bits in the PCI status register. */
                v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
                CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
                pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
                    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
                    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
                CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
        }

        /* Check for PCI Express Uncorrectable Error. */
        if ((status & Y2_IS_PCI_EXP) != 0) {
                uint32_t v32;

                /*
                 * On PCI Express bus bridges are called root complexes (RC).
                 * PCI Express errors are recognized by the root complex too,
                 * which requests the system to handle the problem. After
                 * error occurence it may be that no access to the adapter
                 * may be performed any longer.
                 */

                v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
                if ((v32 & PEX_UNSUP_REQ) != 0) {
                        /* Ignore unsupported request error. */
                        device_printf(sc->msk_dev,
                            "Uncorrectable PCI Express error\n");
                }
                if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
                        int i;

                        /* Get TLP header form Log Registers. */
                        for (i = 0; i < 4; i++)
                                tlphead[i] = CSR_PCI_READ_4(sc,
                                    PEX_HEADER_LOG + i * 4);
                        /* Check for vendor defined broadcast message. */
                        if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f))
{
                                sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
                                CSR_WRITE_4(sc, B0_HWE_IMSK,
                                    sc->msk_intrhwemask);
                                CSR_READ_4(sc, B0_HWE_IMSK);
                        }
                }
                /* Clear the interrupt. */
                CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
                CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
                CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
        }

        if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
                msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
        if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
                msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
}

static __inline void
msk_rxput(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;

        sc = sc_if->msk_softc;
        if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
                bus_dmamap_sync(
                    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
                    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
                    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
        else
                bus_dmamap_sync(
                    sc_if->msk_cdata.msk_rx_ring_tag,
                    sc_if->msk_cdata.msk_rx_ring_map,
                    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
        CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
            PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
}

static int
msk_handle_events(struct msk_softc *sc)
{
        struct msk_if_softc *sc_if;
        int rxput[2];
        struct msk_stat_desc *sd;
        uint32_t control, status;
        int cons, idx, len, port, rxprog;

        idx = CSR_READ_2(sc, STAT_PUT_IDX);
        if (idx == sc->msk_stat_cons)
                return (0);

        /* Sync status LEs. */
        bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
            BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
        /* XXX Sync Rx LEs here. */

        rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;

        rxprog = 0;
        for (cons = sc->msk_stat_cons; cons != idx;) {
                sd = &sc->msk_stat_ring[cons];
                control = le32toh(sd->msk_control);
                if ((control & HW_OWNER) == 0)
                        break;
                /*
                 * Marvell's FreeBSD driver updates status LE after clearing
                 * HW_OWNER. However we don't have a way to sync single LE
                 * with bus_dma(9) API. bus_dma(9) provides a way to sync
                 * an entire DMA map. So don't sync LE until we have a better
                 * way to sync LEs.
                 */
                control &= ~HW_OWNER;
                sd->msk_control = htole32(control);
                status = le32toh(sd->msk_status);
                len = control & STLE_LEN_MASK;
                port = (control >> 16) & 0x01;
                sc_if = sc->msk_if[port];
                if (sc_if == NULL) {
                        device_printf(sc->msk_dev, "invalid port opcode "
                            "0x%08x\n", control & STLE_OP_MASK);
                        continue;
                }

                switch (control & STLE_OP_MASK) {
                case OP_RXVLAN:
                        sc_if->msk_vtag = ntohs(len);
                        break;
                case OP_RXCHKSVLAN:
                        sc_if->msk_vtag = ntohs(len);
                        break;
                case OP_RXSTAT:
                        if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
                                msk_jumbo_rxeof(sc_if, status, len);
                        else
                                msk_rxeof(sc_if, status, len);
                        rxprog++;
                        /*
                         * Because there is no way to sync single Rx LE
                         * put the DMA sync operation off until the end of
                         * event processing.
                         */
                        rxput[port]++;
                        /* Update prefetch unit if we've passed water mark. */
                        if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
                                msk_rxput(sc_if);
                                rxput[port] = 0;
                        }
                        break;
                case OP_TXINDEXLE:
                        if (sc->msk_if[MSK_PORT_A] != NULL)
                                msk_txeof(sc->msk_if[MSK_PORT_A],
                                    status & STLE_TXA1_MSKL);
                        if (sc->msk_if[MSK_PORT_B] != NULL)
                                msk_txeof(sc->msk_if[MSK_PORT_B],
                                    ((status & STLE_TXA2_MSKL) >>
                                    STLE_TXA2_SHIFTL) |
                                    ((len & STLE_TXA2_MSKH) <<
                                    STLE_TXA2_SHIFTH));
                        break;
                default:
                        device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
                            control & STLE_OP_MASK);
                        break;
                }
                MSK_INC(cons, MSK_STAT_RING_CNT);
                if (rxprog > sc->msk_process_limit)
                        break;
        }

        sc->msk_stat_cons = cons;
        /* XXX We should sync status LEs here. See above notes. */

        if (rxput[MSK_PORT_A] > 0)
                msk_rxput(sc->msk_if[MSK_PORT_A]);
        if (rxput[MSK_PORT_B] > 0)
                msk_rxput(sc->msk_if[MSK_PORT_B]);

        return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
}

/* Legacy interrupt handler for shared interrupt. */
static void
msk_legacy_intr(void *xsc)
{
        struct msk_softc *sc;
        struct msk_if_softc *sc_if0, *sc_if1;
        struct ifnet *ifp0, *ifp1;
        uint32_t status;

        sc = xsc;
        MSK_LOCK(sc);

        /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
        status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
        if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
            (status & sc->msk_intrmask) == 0) {
                CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
                return;
        }

        sc_if0 = sc->msk_if[MSK_PORT_A];
        sc_if1 = sc->msk_if[MSK_PORT_B];
        ifp0 = ifp1 = NULL;
        if (sc_if0 != NULL)
                ifp0 = sc_if0->msk_ifp;
        if (sc_if1 != NULL)
                ifp1 = sc_if1->msk_ifp;

        if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
                msk_intr_phy(sc_if0);
        if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
                msk_intr_phy(sc_if1);
        if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
                msk_intr_gmac(sc_if0);
        if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
                msk_intr_gmac(sc_if1);
        if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
                device_printf(sc->msk_dev, "Rx descriptor error\n");
                sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
                CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
                CSR_READ_4(sc, B0_IMSK);
        }
        if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
                device_printf(sc->msk_dev, "Tx descriptor error\n");
                sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
                CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
                CSR_READ_4(sc, B0_IMSK);
        }
        if ((status & Y2_IS_HW_ERR) != 0)
                msk_intr_hwerr(sc);

        while (msk_handle_events(sc) != 0)
                ;
        if ((status & Y2_IS_STAT_BMU) != 0)
                CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);

        /* Reenable interrupts. */
        CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);

        if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
            !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
                taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
        if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
            !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
                taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);

        MSK_UNLOCK(sc);
}

static int
msk_intr(void *xsc)
{
        struct msk_softc *sc;
        uint32_t status;

        sc = xsc;
        status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
        /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
        if (status == 0 || status == 0xffffffff) {
                CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
                return (FILTER_STRAY);
        }

        taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
        return (FILTER_HANDLED);
}

static void
msk_int_task(void *arg, int pending)
{
        struct msk_softc *sc;
        struct msk_if_softc *sc_if0, *sc_if1;
        struct ifnet *ifp0, *ifp1;
        uint32_t status;
        int domore;

        sc = arg;
        MSK_LOCK(sc);

        /* Get interrupt source. */
        status = CSR_READ_4(sc, B0_ISRC);
        if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
            (status & sc->msk_intrmask) == 0)
                goto done;

        sc_if0 = sc->msk_if[MSK_PORT_A];
        sc_if1 = sc->msk_if[MSK_PORT_B];
        ifp0 = ifp1 = NULL;
        if (sc_if0 != NULL)
                ifp0 = sc_if0->msk_ifp;
        if (sc_if1 != NULL)
                ifp1 = sc_if1->msk_ifp;

        if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
                msk_intr_phy(sc_if0);
        if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
                msk_intr_phy(sc_if1);
        if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
                msk_intr_gmac(sc_if0);
        if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
                msk_intr_gmac(sc_if1);
        if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
                device_printf(sc->msk_dev, "Rx descriptor error\n");
                sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
                CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
                CSR_READ_4(sc, B0_IMSK);
        }
        if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
                device_printf(sc->msk_dev, "Tx descriptor error\n");
                sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
                CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
                CSR_READ_4(sc, B0_IMSK);
        }
        if ((status & Y2_IS_HW_ERR) != 0)
                msk_intr_hwerr(sc);

        domore = msk_handle_events(sc);
        if ((status & Y2_IS_STAT_BMU) != 0)
                CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);

        if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
            !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
                taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
        if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
            !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
                taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);

        if (domore > 0) {
                taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
                MSK_UNLOCK(sc);
                return;
        }
done:
        MSK_UNLOCK(sc);

        /* Reenable interrupts. */
        CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
}

static void
msk_init(void *xsc)
{
        struct msk_if_softc *sc_if = xsc;

        MSK_IF_LOCK(sc_if);
        msk_init_locked(sc_if);
        MSK_IF_UNLOCK(sc_if);
}

static void
msk_init_locked(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        struct ifnet *ifp;
        struct mii_data  *mii;
        uint16_t eaddr[ETHER_ADDR_LEN / 2];
        uint16_t gmac;
        int error, i;

        MSK_IF_LOCK_ASSERT(sc_if);

        ifp = sc_if->msk_ifp;
        sc = sc_if->msk_softc;
        mii = device_get_softc(sc_if->msk_miibus);

        error = 0;
        /* Cancel pending I/O and free all Rx/Tx buffers. */
        msk_stop(sc_if);

        sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
            ETHER_VLAN_ENCAP_LEN;
        if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
            sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
                /*
                 * In Yukon EC Ultra, TSO & checksum offload is not
                 * supported for jumbo frame.
                 */
                ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
                ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
        }

        /*
         * Initialize GMAC first.
         * Without this initialization, Rx MAC did not work as expected
         * and Rx MAC garbled status LEs and it resulted in out-of-order
         * or duplicated frame delivery which in turn showed very poor
         * Rx performance.(I had to write a packet analysis code that
         * could be embeded in driver to diagnose this issue.)
         * I've spent almost 2 months to fix this issue. If I have had
         * datasheet for Yukon II I wouldn't have encountered this. :-(
         */
        gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);

        /* Dummy read the Interrupt Source Register. */
        CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));

        /* Set MIB Clear Counter Mode. */
        gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
        /* Read all MIB Counters with Clear Mode set. */
        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
                GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
        /* Clear MIB Clear Counter Mode. */
        gmac &= ~GM_PAR_MIB_CLR;
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);

        /* Disable FCS. */
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);

        /* Setup Transmit Control Register. */
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));

        /* Setup Transmit Flow Control Register. */
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);

        /* Setup Transmit Parameter Register. */
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
            TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
            TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));

        gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
            GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);

        if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
                gmac |= GM_SMOD_JUMBO_ENA;
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);

        /* Set station address. */
        bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
        for (i = 0; i < ETHER_ADDR_LEN /2; i++)
                GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
                    eaddr[i]);
        for (i = 0; i < ETHER_ADDR_LEN /2; i++)
                GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
                    eaddr[i]);

        /* Disable interrupts for counter overflows. */
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);

        /* Configure Rx MAC FIFO. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
            GMF_OPER_ON | GMF_RX_F_FL_ON);

        /* Set promiscuous mode. */
        msk_setpromisc(sc_if);

        /* Set multicast filter. */
        msk_setmulti(sc_if);

        /* Flush Rx MAC FIFO on any flow control or error. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
            GMR_FS_ANY_ERR);

        /*
         * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
         * due to hardware hang on receipt of pause frames.
         */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
            RX_GMF_FL_THR_DEF + 1);

        /* Configure Tx MAC FIFO. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);

        /* Configure hardware VLAN tag insertion/stripping. */
        msk_setvlan(sc_if, ifp);

        if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
                /* Set Rx Pause threshould. */
                CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
                    MSK_ECU_LLPP);
                CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
                    MSK_ECU_ULPP);
                if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
                        /*
                         * Set Tx GMAC FIFO Almost Empty Threshold.
                         */
                        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR)
,
                            MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
                        /* Disable Store & Forward mode for Tx. */
                        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T)
,
                            TX_JUMBO_ENA | TX_STFW_DIS);
                } else {
                        /* Enable Store & Forward mode for Tx. */
                        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T)
,
                            TX_JUMBO_DIS | TX_STFW_ENA);
                }
        }

        /*
         * Disable Force Sync bit and Alloc bit in Tx RAM interface
         * arbiter as we don't use Sync Tx queue.
         */
        CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
            TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
        /* Enable the RAM Interface Arbiter. */
        CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);

        /* Setup RAM buffer. */
        msk_set_rambuffer(sc_if);

        /* Disable Tx sync Queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);

        /* Setup Tx Queue Bus Memory Interface. */
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
        CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
        if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
            sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
                /* Fix for Yukon-EC Ultra: set BMU FIFO level */
                CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV)
;
        }

        /* Setup Rx Queue Bus Memory Interface. */
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
        CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
        if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
            sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
                /* MAC Rx RAM Read is controlled by hardware. */
                CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
        }

        msk_set_prefetch(sc, sc_if->msk_txq,
            sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
        msk_init_tx_ring(sc_if);

        /* Disable Rx checksum offload and RSS hash. */
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
            BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
        if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
                msk_set_prefetch(sc, sc_if->msk_rxq,
                    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
                    MSK_JUMBO_RX_RING_CNT - 1);
                error = msk_init_jumbo_rx_ring(sc_if);
         } else {
                msk_set_prefetch(sc, sc_if->msk_rxq,
                    sc_if->msk_rdata.msk_rx_ring_paddr,
                    MSK_RX_RING_CNT - 1);
                error = msk_init_rx_ring(sc_if);
        }
        if (error != 0) {
                device_printf(sc_if->msk_if_dev,
                    "initialization failed: no memory for Rx buffers\n");
                msk_stop(sc_if);
                return;
        }

        /* Configure interrupt handling. */
        if (sc_if->msk_port == MSK_PORT_A) {
                sc->msk_intrmask |= Y2_IS_PORT_A;
                sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
        } else {
                sc->msk_intrmask |= Y2_IS_PORT_B;
                sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
        }
        CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
        CSR_READ_4(sc, B0_HWE_IMSK);
        CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
        CSR_READ_4(sc, B0_IMSK);

        sc_if->msk_link = 0;
        mii_mediachg(mii);

        ifp->if_drv_flags |= IFF_DRV_RUNNING;
        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

        callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}

static void
msk_set_rambuffer(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        int ltpp, utpp;

        sc = sc_if->msk_softc;
        if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
                return;

        /* Setup Rx Queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
            sc->msk_rxqstart[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
            sc->msk_rxqend[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
            sc->msk_rxqstart[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
            sc->msk_rxqstart[sc_if->msk_port] / 8);

        utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
            sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
        ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
            sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
        if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
                ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
        /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */

        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
        CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));

        /* Setup Tx Queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
            sc->msk_txqstart[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
            sc->msk_txqend[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
            sc->msk_txqstart[sc_if->msk_port] / 8);
        CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
            sc->msk_txqstart[sc_if->msk_port] / 8);
        /* Enable Store & Forward for Tx side. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
        CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
}

static void
msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
    uint32_t count)
{

        /* Reset the prefetch unit. */
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
            PREF_UNIT_RST_SET);
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
            PREF_UNIT_RST_CLR);
        /* Set LE base address. */
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
            MSK_ADDR_LO(addr));
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
            MSK_ADDR_HI(addr));
        /* Set the list last index. */
        CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
            count);
        /* Turn on prefetch unit. */
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
            PREF_UNIT_OP_ON);
        /* Dummy read to ensure write. */
        CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
}

static void
msk_stop(struct msk_if_softc *sc_if)
{
        struct msk_softc *sc;
        struct msk_txdesc *txd;
        struct msk_rxdesc *rxd;
        struct msk_rxdesc *jrxd;
        struct ifnet *ifp;
        uint32_t val;
        int i;

        MSK_IF_LOCK_ASSERT(sc_if);
        sc = sc_if->msk_softc;
        ifp = sc_if->msk_ifp;

        callout_stop(&sc_if->msk_tick_ch);
        sc_if->msk_watchdog_timer = 0;

        /* Disable interrupts. */
        if (sc_if->msk_port == MSK_PORT_A) {
                sc->msk_intrmask &= ~Y2_IS_PORT_A;
                sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
        } else {
                sc->msk_intrmask &= ~Y2_IS_PORT_B;
                sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
        }
        CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
        CSR_READ_4(sc, B0_HWE_IMSK);
        CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
        CSR_READ_4(sc, B0_IMSK);

        /* Disable Tx/Rx MAC. */
        val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
        val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
        GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
        /* Read again to ensure writing. */
        GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);

        /* Stop Tx BMU. */
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
        val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
        for (i = 0; i < MSK_TIMEOUT; i++) {
                if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
                        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
                            BMU_STOP);
                        CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
                } else
                        break;
                DELAY(1);
        }
        if (i == MSK_TIMEOUT)
                device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
            RB_RST_SET | RB_DIS_OP_MD);

        /* Disable all GMAC interrupt. */
        CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
        /* Disable PHY interrupt. */
        msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);

        /* Disable the RAM Interface Arbiter. */
        CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);

        /* Reset the PCI FIFO of the async Tx queue */
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
            BMU_RST_SET | BMU_FIFO_RST);

        /* Reset the Tx prefetch units. */
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
            PREF_UNIT_RST_SET);

        /* Reset the RAM Buffer async Tx queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);

        /* Reset Tx MAC FIFO. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
        /* Set Pause Off. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);

        /*
         * The Rx Stop command will not work for Yukon-2 if the BMU does not
         * reach the end of packet and since we can't make sure that we have
         * incoming data, we must reset the BMU while it is not during a DMA
         * transfer. Since it is possible that the Rx path is still active,
         * the Rx RAM buffer will be stopped first, so any possible incoming
         * data will not trigger a DMA. After the RAM buffer is stopped, the
         * BMU is polled until any DMA in progress is ended and only then it
         * will be reset.
         */

        /* Disable the RAM Buffer receive queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
        for (i = 0; i < MSK_TIMEOUT; i++) {
                if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
                    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
                        break;
                DELAY(1);
        }
        if (i == MSK_TIMEOUT)
                device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
        CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
            BMU_RST_SET | BMU_FIFO_RST);
        /* Reset the Rx prefetch unit. */
        CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
            PREF_UNIT_RST_SET);
        /* Reset the RAM Buffer receive queue. */
        CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
        /* Reset Rx MAC FIFO. */
        CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);

        /* Free Rx and Tx mbufs still in the queues. */
        for (i = 0; i < MSK_RX_RING_CNT; i++) {
                rxd = &sc_if->msk_cdata.msk_rxdesc[i];
                if (rxd->rx_m != NULL) {
                        bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
                            rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
                        bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
                            rxd->rx_dmamap);
                        m_freem(rxd->rx_m);
                        rxd->rx_m = NULL;
                }
        }
        for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
                jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
                if (jrxd->rx_m != NULL) {
                        bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
                            jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
                        bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
                            jrxd->rx_dmamap);
                        m_freem(jrxd->rx_m);
                        jrxd->rx_m = NULL;
                }
        }
        for (i = 0; i < MSK_TX_RING_CNT; i++) {
                txd = &sc_if->msk_cdata.msk_txdesc[i];
                if (txd->tx_m != NULL) {
                        bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
                            txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
                        bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
                            txd->tx_dmamap);
                        m_freem(txd->tx_m);
                        txd->tx_m = NULL;
                }
        }

        /*
         * Mark the interface down.
         */
        ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
        sc_if->msk_link = 0;
}

static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
        int error, value;

        if (!arg1)
                return (EINVAL);
        value = *(int *)arg1;
        error = sysctl_handle_int(oidp, &value, 0, req);
        if (error || !req->newptr)
                return (error);
        if (value < low || value > high)
                return (EINVAL);
        *(int *)arg1 = value;

        return (0);
}

static int
sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
{

        return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
            MSK_PROC_MAX));
}

   [36]Legal Notices | © 1995-2008 The FreeBSD Project. All rights
   reserved.


    [37]www@FreeBSD.org
    2008/09/23 16:31:45

References

   1. http://www.freebsd.org/search/opensearch/cvsweb.xml
   2. file://localhost/tmp/tmpnlfd-U.html#content
   3. file://localhost/tmp/tmpnlfd-U.html#content
   4. http://www.FreeBSD.org/
   5. file://localhost/tmp/tmpnlfd-U.html
   6. file://localhost/tmp/tmpnlfd-U.html
   7. http://www.FreeBSD.org/donations/
   8. http://www.FreeBSD.org/mailto.html
   9. http://www.FreeBSD.org/
  10. http://www.FreeBSD.org/about.html
  11. http://www.FreeBSD.org/where.html
  12. http://www.FreeBSD.org/docs.html
  13. http://www.FreeBSD.org/community.html
  14. http://www.FreeBSD.org/projects/index.html
  15. http://www.FreeBSD.org/support.html
  16. file://localhost/tmp/if_msk.c#rev1.34
  17. file://localhost/tmp/if_msk.c#rev1.34
  18. file://localhost/cgi/cvsweb.cgi/#dirlist
  19. file://localhost/cgi/cvsweb.cgi/src/#dirlist
  20. file://localhost/cgi/cvsweb.cgi/src/sys/#dirlist
  21. file://localhost/cgi/cvsweb.cgi/src/sys/dev/#dirlist
  22. file://localhost/cgi/cvsweb.cgi/src/sys/dev/msk/#dirlist
  23. file://localhost/cgi/cvsweb.cgi/#dirlist
  24. file://localhost/cgi/cvsweb.cgi/src/#dirlist
  25. file://localhost/cgi/cvsweb.cgi/src/sys/#dirlist
  26. file://localhost/cgi/cvsweb.cgi/src/sys/dev/#dirlist
  27. file://localhost/cgi/cvsweb.cgi/src/sys/dev/msk/#dirlist
  28. file://localhost/cgi/cvsweb.cgi/src/sys/dev/msk/if_msk.c
  29. file://localhost/cgi/cvsweb.cgi/~checkout~/src/sys/dev/msk/if_msk.c?rev=1.34;content-type=text%2Fplain
  30. file://localhost/tmp/if_msk.c?rev=1.34;content-type=text%2Fplain
  31. file://localhost/tmp/if_msk.c?annotate=1.34
  32. file://localhost/tmp/if_msk.c?r1=1.34#rev1.34
  33. file://localhost/tmp/if_msk.c?only_with_tag=MAIN
  34. file://localhost/tmp/if_msk.c?only_with_tag=HEAD
  35. http://www.FreeBSD.org/cgi/man.cgi?apropos=0&sektion=9&query=m_pullup&manpath=FreeBSD+7.0-current&format=html
  36. http://www.FreeBSD.org/copyright/
  37. http://www.FreeBSD.org/mailto.html

--=-O2nhkhwd6nCYy5VILwTc--





Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?1224100966.4199.6.camel>