Date: Thu, 1 May 1997 19:44:12 +0200 From: Andreas Klemm <andreas@klemm.gtn.com> To: smp@freebsd.org Cc: smp@csn.net, peter@freebsd.org, jkh@freebsd.org, reny@klemm.gtn.com Subject: Made nice HTML page about FreeBSD SMP performance Message-ID: <19970501194412.06645@klemm.gtn.com>
next in thread | raw e-mail | index | archive | help
--2oS5YaxWCcQjTEyO Content-Type: text/plain; charset=us-ascii Hi ! Wouldn't it be a good idea to put something like this onto the FreeBSD WWW server and of course onto other servers as you like ?! In usenet I saw today questions about FreeBSD SMP performance. So I did the little work. If you come to other conclusions than I after seeing the figures, then please tell me what I should change and why. I'f finish the document then and would like to give it somebody, who maintains the FreeBSD WWW Server. BTW, who is it currently ? BTW: thanks to my wife Reinhild who did the nice jpeg figures ;-) Andreas /// -- powered by Symmetric MultiProcessor FreeBSD http://www.freebsd.org/~fsmp/SMP/SMP.html --2oS5YaxWCcQjTEyO Content-Type: text/html Content-Disposition: attachment; filename="kbench.html" <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"> <html> <head> <title>FreeBSD SMP - kernel compilation bench</title> </head> <h1>FreeBSD SMP - kernel compilation bench</h1> <hr> <p>I made something like an <em>application level benchmark</em> to bench the performance of the FreeBSD SMP (Symmetric Multi Processing) kernel against the normal one. <p>My application was compiling my FreeBSD custom kernel. I tried several -j options for <i>make</i> to find out optimal values for that kind of equipment und to make best use out of FreeBSD-SMP. <p>I got interesting results by doing that under a normal FreeBSD-current kernel environment, a SMP kernel running only one CPU and doing that on a SMP kernel and using the two CPU's. <p>You can see this kind of tests already in PC magazines like C't, where they bench the compile time for a Linux kernel. <p>All test were performed in single user mode using FreeBSD-current's kernel sources of May, 1st 1997. <p><h2>My test equipment</h2> <ul> <li>Tyan Titan Pro ATX (S1668ATX)</li> <li>2 x 200 MHz Pentium Pro CPU's</li> <li>64 MB RAM, 60ns, PS/2 (2x32)</li> <li>AHA 2940, IBM DORS 32160</li> </ul> <p> <table border cellspacing=0 cellpadding=5> <tr> <th colspan=4 align=center> FreeBSD-current uni-processor kernel </tr> <tr align=center> <td>jobs (make -j)</td> <td>time real [s]</td> <td>time user [s]</td> <td>time sys [s]</td> </tr> <tr align=center> <td>1</td> <td>262.09</td> <td>189.47</td> <td>15.21</td> </tr> <tr align=center> <td>2</td> <td>215.58</td> <td>191.09</td> <td>16.24</td> </tr> <tr align=center> <td>4</td> <td>213.17</td> <td>191.39</td> <td>19.49</td> </tr> <tr align=center> <td>8</td> <td>213.24</td> <td>191.91</td> <td>19.40</td> </tr> <tr align=center> <td>16</td> <td>215.19</td> <td>192.10</td> <td>19.31</td> </tr> </table> <p> <table border cellspacing=0 cellpadding=5> <tr> <th colspan=4 align=center> FreeBSD-current custom SMP kernel 1 CPU </tr> <tr align=center> <td>jobs (make -j)</td> <td>time real [s]</td> <td>time user [s]</td> <td>time sys [s]</td> </tr> <tr align=center> <td>1</td> <td>269.95</td> <td>189.22</td> <td>23.39</td> </tr> <tr align=center> <td>2</td> <td>222.68</td> <td>191.38</td> <td>23.03</td> </tr> <tr align=center> <td>4</td> <td>218.24</td> <td>192.00</td> <td>23.47</td> </tr> <tr align=center> <td>8</td> <td>217.93</td> <td>191.35</td> <td>24.29</td> </tr> <tr align=center> <td>16</td> <td>220.15</td> <td>191.58</td> <td>24.26</td> </tr> </table> <p> <table border cellspacing=0 cellpadding=5> <tr> <th colspan=4 align=center> FreeBSD-current custom SMP kernel 2 CPUs </tr> <tr align=center> <td>jobs (make -j)</td> <td>time real [s]</td> <td>time user [s]</td> <td>time sys [s]</td> </tr> <tr align=center> <td>1</td> <td>252.35</td> <td>144.69</td> <td>75.06</td> </tr> <tr align=center> <td>2</td> <td>137.06</td> <td>169.23</td> <td>56.46</td> </tr> <tr align=center> <td>4</td> <td>119.95</td> <td>176.02</td> <td>53.25</td> </tr> <tr align=center> <td>8</td> <td>119.08</td> <td>175.47</td> <td>54.97</td> </tr> <tr align=center> <td>16</td> <td>120.03</td> <td>178.42</td> <td>53.32</td> </tr> </table> <p><h2>Some performance figures</h2> <!-- This is the 1st figure: real time --> <p><img src="smpbench-real.gif" width=443 height=270> <br>Figure 1: real time in seconds <p>This figure shows two things: <ul> <li>The FreeBSD SMP kernel with 2 CPU's is about <strong>90% faster</strong> than a normal uni-processor system. Yeah ! That's factor 1.9 ;-) </li> <li>The benchmark results of the SMP kernel running with only <em>one CPU</em> are a little slower than running on a normal kernel. </li> </ul> <!-- This is the 2nd figure: user time --> <p><img src="smpbench-user.gif" width=443 height=270> <br>Figure 2: user time in seconds <p>Although the SMP kernel with one CPU is a little slower, you see, that user time is about the same ! <!-- This is the 3rd figure: sys time --> <p><img src="smpbench-sys.gif" width=443 height=270> <br>Figure 3: sys time (kernel mode) in seconds <p> <ul> <li>Here you see the little system overhead of the SMP kernel comparing normal kernel and one CPU SMP kernel. </li> <li>If both CPU's are running, the system time increases about factor 3-4. This must be the about 10% you are loosing if you compare the real times. </li> <li>But no matter, 90% faster is definitively faster ;-) </ul> <p> <hr> <address><a href="mailto:andreas@klemm.gtn.com">Andreas Klemm</a></address> <!-- Created: Thu May 1 17:18:20 CEST 1997 --> <!-- hhmts start --> Last modified: Thu May 1 18:53:11 CEST 1997 <!-- hhmts end --> </body> </html> --2oS5YaxWCcQjTEyO Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smpbench-real.gif" R0lGODdhuwEOAfcAAAAAAAAAewAAvQAA/wB9AAC+AAD/AEpNSmNlY3sAAHt5e4SChIyKjJSa lKWmpa2yrb0AAL26vcbHxs7PztbX1t7f3ufj5+fn5+/v7/8AAP///wAACIBg3ADwzgAXvwAI 74AAAvCwABERADAAlLmw8BEREQGUG+zwthARAAgAAC4bpLm2zhEAvwAA7+YboBa2HwMAAwIA OACwzAARv24EswAACsAAJAIACOY1CBYuzwMPv+kA3BawzgMRvwIEYAAAUAAAJYA1BvAuABEP AAAIAEgA8M2wzg0RvwwEigAALAAAJDAACLmwzxERv0gE3LkAzuE1YAsuUA8PJQgICPTIbsC4 ABIRwAgAAgNoXgDNAQC/AADvAAAEALgAABEAAExgeALwzmAADPCwzxcRvwgA73wAA86wAL8R AO8AABSUzs7wdxIRJAgACAAbDNC2AACIALjNABG/AEwAFAKwAAARAGAEGvAAABcAAAA1ELgu oBEPEcj8lM64zL8Rv+8A77eYzi3NdwS/JADvCFYEYC0AUAQAJQBg/wDw/wAX/wAI/zwAAM+w AAAAKJCwABIRADyUAM/wAAAAOJAAzhIAvwBvGQAxJAAPA/gAAECAGVbwJAMRAwBsYJC68BIR FwBgLgDwPAAXDwAICLsuUgE8AQAPAA5SKQEBAAApAACA3AHwzkDwcM+6zzwBAs/sAL8QAO8I APjmXM66zXxgAlbOAAO/AAAK/5AA/xIA/7tuXAEAzQDAvwAC7w5gZwHOzQC/vwDv7wBrDADO AOgAvtHOOb+/D+/vCABvXAAxzQAPvwDOsAC/EQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAuwEOAQAI/gA1CBxIsKDBgwgTKlzIsKHD hxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fP n0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZs2jTql3Ltq3b t3Djyp1Lt65drRUYCAQA4OIEBRP5alBAYeaCw4gT312MVbDGAxEC941wIOZhCwssaN6sObHn z4gZiw7KV7BpAAoAQG6geoJAB3wbFIwAoIIGvgoAa4ANQLaGCwha3+5bAYCElog3Z+bMvLlz 5aCjLxhNvaXj0xQw8M2uejeACxcA/ugdmHpv7dffw+tFcOF25eu6U15mvvy5/fsA7kOXDrq6 /4vX9RWgecOV1tdAA5pnoAYYPJCagAc6dtJ8zdWn34Wb5Yfhhhbkx19//4U4HIEJnoZQgiMS FFxxEBJYUnL2WcghfjNiqOGMH34m4lsDltgXaxKoR1B5KWoApJB8hdfibfGFROF9Mtbo3I1S PkdllVNylqOOO241wQHGmZiiY7yNNxBthUnonXgCTQAAbyNSYJyTT+oXJZYZ4mmlnnviKV2X bx3wgEUPVPZRnRjeqeeVfHbYaHOMNjodoG39ZZECrnWE6IaK4hnpoo8y96mek1JqqkYwYtkp lqOyGipn/q2qeuqsFh0Wa6KvanZrjbvymmtntAb7EIy9QvlrsRsim+yvmAnrbEJ1KpuhhqtW Ka1+12LLbKnPdruptHwJIABf1UqZrX3norttt8+mCumM4Yorr4H0enoss+k+xy27pm4qarIA yCvwvJDSa3Bp7+aab5a/7suviO7SiG3AA1c87rUHZ2zvvQ0/3KW/6qJLscUk88XnpxkfnLDC 63r8H8gSF0zyzAKb7OqiKRu8ca4Ou2xXxPDKTPPQBFvL8ZQ5G7jyqz37LBfMy05L9NTzgnu0 p0kj7KfTdQHNoc2OTjsy1USDbePVoaKctdnKcf10ufgBUEABJlMJwAADxEt2/tlfo/1ovgY3 7TZa82Es99yIm3033nmPvXfJuy78r998Cj74WO4qyxfinCeeH1+MM67345BryzLlpF6e1rdf H97563SDHrrojpM+MNuwog4qz6qX5bWuNroO+/CLzy667TSjrPvOoVreO1ZQhy3y8NRzLrvx jSNf+uSvSs59889/FT3wVgpf/fnXGz+69lXnfnr3LYef1e99imr++fjHjj3e67N/sdLwex/T 5Ac9uC2tQ/fLnwKLh73+ka5/OTPX8mRFwKnQ70JXKo0CN2g9BqpPew4cWgQZFkDeVTAmpUGQ hFI4LAPGTFcGMMDmOMjB9M0uhDPDIQiTlrb4ndA6/gi6TRAPJESGjO9ssIphDGdIwwV6MHQ6 rJr/RFg7ca1Na/Ub4A9lIqAhBhFaR4xahpSoxAQ2kXo2hGIVrbjGKbLRjf9b26Oct8WSXMeL e0FIGIOWRDIu0YxnhN0T1Xi7NroxiuzD4RVx17Y6wqSLeSQiEQvkQgn20Y9/DGT+0khIRPrP kFME5d40RkdHkgSSQpSkQbyXxQ5h0o9M1CQaB0k7A8GxZqJM5C0tZrJSmtIjqgzmFwnCShKW 5pWYBKQsPbc/9aXsgbnc4S4LGQBy/XIlLCyQCieJIGbBSmsAQGYylbnM2HGymWrMWMU8qctp 1iwA8PTQNYFSTPvZTZyv/oxlOecWS4Oh85+1VKc7o4k8AMAzns2ap0+KWTcN3ROf+dwnP8lp TgMB9KIBPRg03fnOg1YzoQrliff4AgEI2O2SEIUlRdG3UuLRC6MwTadAa8bRjnpUniEVaaNI WtKS3uihKc1nSzunz3L6M6ZIlWnO4MgXjx4UpznVSbp42lOf5mmMQRVnUas3VFlmLalgzWjS cujUm4I0qjjJFlWr2lOHojSrEcXfViX6urlW9KthBWvKympWX6KVJeACAFsHa1WgwhWZdrUr XT1H10WeM6/84+tTz/rXmiBrrYRlq+IOm1J9Knax/ARtXQHpWFqqT7II9WtlVRI5wWb2tSZ9 /itnESu3z4LWtsvsqlwzdkPUflS1q0VJrDAL28Eadrb4NJBoibdcoja3g71FLVSDS5NREbe4 hP0pcjl7sNvqtom4zS0BPGhQ6VKWuihEGnbXa1VXbve9MjRYIMPr1ed6jgDjja5kp4vejWRz Qdpcpf3YS+DYhhO+CCajfOVq38Q1mG74xS95fcvf/mJElUXMo4aJOeACs5cvCQ6xUOnVwQfT V5MAiLCE9VtWalkYJKjcMDdvI7YMuNbDxf2ciHes1Yw197tnTLGK8wtF6QIAuC9+CITuuOFu 2gwANsbxekHM4yoHNWtBfjCEh0xk0ZkXyUlmyIxROUkA6ioDUZZy/o6tzGb4Jm20JhYylye8 3/OG2SIzTuUwuwkrNKdZza89cJsHLeJFLlbOXO5yZOsM5jsfpMx4zDCfM+TnPwM6u4TOtKb/ 6Fg0JlrFdOZrhR0tEXopaJuPFlWlLX3pqgp607CONW0P9mlQs9ipoyb1STK46hu3WrOyDraw tVrrCIe6xXbWtUl43etfY3rY0B42oj99bFwnW9mnVPWqWe1sk0b727GedqKr3VdsY1Pb2/Z1 t18N7nazWdxzLvKXzc1aSG2b285mt7v3HWJ4D5mB5WU0vVPCKCjfW93r5rfC+13sFXt53gPf tb3vje9f63vhGM+qv239cIFHfNkTpzjC/vOd8ZLDdeMO77ior/3xjhSc4n4eeasvbvKaK7jh 5C53y7ONbpF3G9g2DzoscX5razd65xFhNswrPnOhO12GRJf3fo+MdIf8d4VqmvSZl45mmTf9 6TZHuaLzRmGWV13GGSazgKfF9Zj/3NVgr7nYcz7Zo0dc7RjmMAI71Ha3v93bcS/53Iuu87M3 BO97VhCl+870S9M88OAevNRXbnd6RyjSZWabwRnvdcdDfuGSVzmyK4/tvKu9IErn/N99+nl+ h37RHjd8QiAdycTTuM+M9/vfH996Wb+e7BCX/aMBfPU8p171q+d972H9+4BTXvgfOT7yd7/8 bze/7KSH/toX/p973b9d+dUf9PWDr32NSD/3nQc0+MNv5fHHvvwZOT/6Vw949jM/6qI3Ovz9 2/Pud53+62d/hYZ/sPd8+xd//ed/jad+Arhp7meABwggCaiA6admVNaAbfaALUZ1ESiBuKeA zfZzPGUgGFhlGohr2ReBLweCIWhxmXVMJZhgJ1h3HXhhIceC/zdzFQiDMYhcM5haNeiBH4iD OWiBHkaCPXhyBAh8EFiDmRcgY3aDRLiAL1iBsMWDSUhsxUZ3vxWERSJpebcX9jOFLfhhIoiF WVhGS+h8+ueEaYd6ifdTn0OGlWaFPmWHOIaGSfiDXeiFksRCYah4W0eHRXiF9Gdc/hfYg3yY a/BnfG+4TRM4hZ13XYd4h4kogItodtDniIF4e9xHiIXoapX4YfTCfpmYgspmeo+od58IiqxG iaOoWeqWMnF3il4IhlhnfJFIhr6Gh5XoixljcrZ4ixQhf3QoWLAYi6JoccEYeWtIfsQIEcZ4 jL4IgNWYhzmjaWKnaGzYhtGYdLsIigaijMZFjm2VXUkjgw3Hjdj3jaUWjq7YdaVBjtfoeBaY jhC1jQBHYQuQTe4oZvAYj3WYjI5Xj+r3iwYzdATYjTeVZ/+oENMokAc3j+tmjndokZeoj5PX Yg8JjkMokd1HkQeJkRZpUgnAbhqZf0/VkR7ZiiDpf+NY/mAEuXslCQAJcJIKWWt0l3UsuRAR +ZKcJ5KBVpImVZM3iZM3t4WEx5MiQXsXdk0/CZQhSYkGOZLmaJNHiZLPyJHCRUzm5zJPiGrb N4hSKY4UOZM0iZFHeZNaqZQbWU1iVny1t2R/eHlfFCF3RJdi6ZDBskKYN5Z8UZYvSS8kqZZr iZRq6Jaix5deWXuRhJdFhHh4FEx2qWeOyS6nZ5mSJoZ7x3eCKZUZs3tVKWVYeZhtqZMsxpiN qZmnZ5cLknnbZBrDRJcxhpmzuYqQ6JKfKZgHY5WGaZo5SW36pZqrKZmReZkxBkncpIrLCZa3 GYZYpJu7OZ3ySJjYNZoWeJhZ/hmc4xZdTHkif4lhlweZkFaZmWmc/MKctreC1NmeSxea50iU pamdpymc8kacxXlqj+iaXUR7eGmed8lkD6OeTcaZH+meCMp18KmM80mf3BlvRYafQRiW+ol6 UpigGIp+KSOC2gmcSamTACehPemTAZmhJhqUCzplHeqhiamT/QhgIyqEZHmiNOqKOaNZK8qi S4RziSGiMQqRJVqjQkqNpZGjOgp1W9ijP2qDBzqkTgqSDZqj9TluiOGjS3oiQfqkWsqCUbqi UzpnpnalFRGVW1qmMGmka/ml/9aPYsqk0mmmcEqBaLqdH0ptVtqmqdakcbqn6DenbPmg/4an bjqj/nxaqH3XpQ4KqMYmqIPqmYb6qG2HqEeKpON2pyxJfExJppBaqJKapsmkkxAJiHAIowU6 pqt0IlBYmZs5oPlpoboSmJsaqwfnp/rmb4xZnn+Im5b6aKjniMgJhk7TnKXqVo4qq8ZqY7T6 qXPmk6uUq9CpYaKql/pZnqcKh5e5qpgpqsMKNpt3rLLaqXRapxJ2eNTan3umnEMEoMJkrav5 nO0arLqqed56rOD6p9zpo3mpZ6RaJKbGnK9Zre9aIKq6q5SSmVpXrPMKqfWKmC06rkmnr5o5 qgVKoOsJsHEYsLb5q676pgkbpwtbq6BmdV7pmthqmev6hidreyjLriXb/i1yOZaE2rF7+rHK Ol7SqK3jCZ6RKaDiKaAqG2Bj5o9bxJ4yy6nJqpAEy6hAmqVFW6M0O3RJq7Szd6FNa6ZPe3NR K7V5qqdVq6Ufm4jfqbUyirBdW6Yfayv7Krbmx7Rli6Fnq6RqC0xs27YI+ra2ErfRN7d0S50L e5JVird5y7V7e6J9azCA63J6O7ifWbhserhy+02wqrhO66cnmbV4K7QGihk9ajCSm6CFa7lq 24k3siUZ07llWbiOa6rD2hlbEh0HY7o2Squpq7qremSte7svSi+wy6VzCrqXe670grvCi7a6 u7sKiqa++7vDGpsGMrzSYbubW7zG23XIG6o+/ptKQgu6y5mpqdpkyeszouuTByO85EK6ryu5 nXqrI+us5/qVt5mfKfu94Bu2pRY4ruu8nnG+VSupqhm0KqSr0JqvMKqtFjtmkbaz8ktdKYO/ OaK/9Oql5DqyEOu9x/mYaJey7WrA12qwHZgxDMwfpauwHYqvOduf2VuXsnnB/2qxtUvAOxuN xme/DAy9+cu5cBqllmqu5sqrqrqKtanBASusFCymHky6uBvCk2uaIjuZ1yrBK3vBB1yyGEyt pYqnRVylH1ylNly3SqxkONvEdzmt7+vCYUpM1yuwYpm6V5zF0WsguzmfCTy7OksUKFwabPwZ Dhy7bCnHyxbHy2a9/sE7w3i8xUSIlX7Mx058FWv8vK2LxJx3koi8a2Exvj2axXnca5AcyXYU Epi7UJR8x7nrxvKoyX8cfT/7E3Vsx6CctqQMY6d0FP0rw857yK2MsS6nFYvsurWsFLRMT5/c uLsMyyPRy6dUxsE8FLRMv6RxzEZhzP7VskJBzMxMx9A8zfPUw9YcVc7scsqczV1yyJ3ozaYC zqcszqbUyeb8S+Gczo60zk+ZxuwcIu6MZ6oYzyKCzgCCm/bczrG5z/yMdv78Q/Uc0BU00AQt PxQKFto7wKwMyCisIA5ZfGqCzwe9E1mbddisZInMmgA7sABd0SjUvSRisrmYxuQZsSRd/pcU DMTAutE/DNKPFJ4koq4y/cLSyrMoG6YTncGjSnwwbRMrzNF1DNEuwtEoPdT9msEefbEAWqE/ jU01bdTvC637uZmBKMS129ITW9W2/M0R7aOWknQ53BeEwSMj7Zgp/MRpvcMpLMQnm5zAGr5U /dHSDBfdTBCQUb8WQRl2vcM2jYvsC7QzfbEmnaoPjcaz6ZeJXddmQSZ84QDm8QAAwB4aQAEP wgDtcSbngRuqEQGscQCuARzCIRhuAtlr4hvDpwHFcRxc46vaJxiwMQGlPRwVUBx6ASYYEB5N QiTboR0AwB2VQdndwRez7R3gwSapzSSDczD7JybOTdZ8wQCs/v2/YwKZDfIgAsvahpvcd/3U TPHc1S0QFfAAwYEAZuwiA7Iip+EAB2DeX2jGS9Ld3s3LfRHbs80XElAcspEa7dEd5AGZ4Z0k JgIbtnEkyN2se9Ek8z0Vjv0mkT3Z7YEBrIEamS0QaBLeI1LaJiInpl0ms9cXcjLdC87ghoIR grJrlVEoI14VDAAAmYIRYU0SLe4amOI2/hjDh72XDb3ibtGzHV3Fz8rjdSFMQFybU13NQq4W Bq3CGH3kSR4XS67P26vYTy4XUX7VOsvYVf7dTv7EWp3RW94WN96YL4vA5RzmaJ7mar7mbN7m bv7mcB7ncj7ndF7ndn7neJ7ner7nQXze537+54Ae6II+6IRe6IZ+6Iie6Iq+6Ize6I7+6JAe 6ZI+6ZRe6ZZ+6Zie6Zq+6Zze6Z7+6aAe6qI+6qQOFQEBADs= --2oS5YaxWCcQjTEyO Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smpbench-sys.gif" R0lGODdhuwEOAfcAAAAAAAAAewAAvQAA/wB9AAC+AAD/AEpNSmNlY3sAAHt5e4SChIyKjJSa lKWmpa2yrb0AAL26vcbHxs7PztbX1t7f3ufj5+fn5+/v7/8AAP///wAACIBg3ADwzgAXvwAI 74AAAvCwABERADAAlLmw8BEREQGUG+zwthARAAgAAC4bpLm2zhEAvwAA7+YboBa2HwMAAwIA OACwzAARv24EswAACsAAJAIACOY1CBYuzwMPv+kA3BawzgMRvwIEYAAAUAAAJYA1BvAuABEP AAAIAEgA8M2wzg0RvwwEigAALAAAJDAACLmwzxERv0gE3LkAzuE1YAsuUA8PJQgICPTIbsC4 ABIRwAgAAgNoXgDNAQC/AADvAAAEALgAABEAAExgeALwzmAADPCwzxcRvwgA73wAA86wAL8R AO8AABSUzs7wdxIRJAgACAAbDNC2AACMALi6AEwAFAKwAAARAGAENfAALhcADwA19LguwBEP EgAICMj8A864ALeYAC3NuAS/EVYE/C0ABwQAAABg/wDw/wAX/wAI/zwAAM+wAAAAKCCwABYR ADyUAM/wAAAAOCAAzhYAvwBvGQAxJAAPA/gAAECAGVbwJAMRAwA8YCC68BYRFwBgLgDwPAAX D7suUgE8AQAPAA5SKQEBAAApAACA3AHwzkDAcM+6z78Rv+8A7zwBAs/sAL8QAO8IAPi2XM66 zXxgAlbOAAO/AAAK/yAA/xYA/7tuXAEAzQDAvwAC7w5gZwHOzQC/vwDv7wBrDgDOAOgAvtHO Ob+/D+/vCABvXAAxzQAPvwDOsAC/EQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAuwEOAQAI/gA1CBxIsKDBgwgTKlzIsKHD hxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fP n0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZs2jTql3Ltq3b t3DjyoVbgYFAAAAuTlBQUQGFuYADp8S78UCEihEOyFzAuLFjwZC34iVMGYACAIYbYJ4g0AHe BgUjAKiggcJlAAwuXL6g4YJl03hTa6gAQMJLxhYWWNjNe7fj38AbRx5ulLCGyhQw4E2OWYPn C67tDrws8AAADK4VTADwQMMDABOs/mO3fJfvysa8dfdez759+uDwFxCfH9N45bt5j+edPJmg 8dMM2KbBAQhogIBiAAqon0q4raeeexBGCECE78UXHH0YbmTffvltuOBBxs32AAIAFCjadg4I VMGIJeKHUoPsPUjhjLxNSOONFkxoIXwZ9liQhx4uqJkE0RFEnQarHaeYcnhhgCQArDV3nHkj oQehjDhKmCWNNm65I3A+xhVebfd9aJxnqIUGwF8YaGYZa86lqUGbeCnAGgW1VYmle3tuyV6X froHaKDtDfolmGESd0B3CDEwWkIPKAaSlRDi5RuhlWIqqKabahpfomJS6V+JnCWk3UcwVgoA BBDoyOmf/q+uN2iss8YqH6i4hpRqoXix6qulsdYYrLDD7lbrq7fmqmxGlAq6qq/QsnosodNS W6yx1/q27LYVMVZtjs9GK+63WZK7pbnnZpsbt+w6ZOWxk4kr76/Booujvfeqm2y7/Ba066y9 ziuwtLRei++NB9+4b7/87optjeEOPDCwmCZMocUX68twww4Ta2zEEk+sKcaZGqzxxtt2LGtv AGQQcMgiW1ssySVfuzDKPjarZY0Z9AwyzOPKPCzNndqMc6Iq15xjzz4DHXO6M2dLNJ9H95j0 zsYy3bTT81KMsMlgG101cTqXy7LWPv/MNcH5Rh12sTePLdfVX/OM9tZrR2vv/tQrvz1s3HK3 VbbQS9+Nd970cul3wdkCHnhadPsJaMuGH454q/zBu/irfDv4+FsNdv5w1pWnffmvXWauutcV S93452s1K3qOZ5fOtNprVzv56qpnvDmnjsP+VcezT2671rhzPW3CvGf+u6fCkzX46IyTfrzl iGsedfP8mS129MP32Xe9tV+Pfd61zk47l9xPRn2wwYNPVeTvc2q8+bcnDzTr6hffPsbxk99T ple06hUOf7c7XeLqZ7/nfex/MRLgVegHq6GVD4Hny52l+ufAe2UugBI8CgFnVLwLYtBlp3uZ 8wzIQviF8Cb9wU9+3CU+75EPXJQ7Yf40OLHuEa6F/rZ6YU1muJ+BzFAhFCThzICVQx0mEGYv 258P62bB1wlxJkQ8jhGRmETF1YtiTXRiBlGnQGlNsYBARNYVaRLDLB6ki22zn41SJ8a74S6K ZYTWClnWQUKBcI0lyaIbZVhDzsmRj9ar4w7JmEco/u+R7TsZIF8iyC3+SF0ekxzA7KZItK0K j43sYSgZacYzYuqPkxRJJe9iEPWNr1zaO2AnkQfKUY7LltIK2er8hMpUhiSG+jmiETHJQAnp jpOztGO8cEnKUeqvh6ZsTy99SUliFvNP5KJjMo+XuVDWsozfzN4e00NNn7jylc6iYhi3yc1l Zo+ZrYKnHt23rnLy5JyI/kxnHNfJTvPxx2nhVOAznWmjadpzJfjMJMuYh8x+6rCbXYNnQAma gIIedCcJrR/r9unQbf7TjBKV57gSQFKLXjQnGV3fx0bW0I7OEpIw5Z5IpUXSkmrrpDhJ6Ryn pk2X+vSnqrMlAGpq03ri1CY63ajQ+PnTpnZ0dZcbKlEretOjIpWYSm1dIp3KVa5CtYdTLapB rRpIdW3QbbLsqlrXGtRfhbWmJiUrGw2WOrQyda147Sp/3grXqspVJqLjn13zStjCuoyvYv3r XDmXvsEa9rF6RSxVjapYmBAtqyqt3l0hy9lkSpWvca1sNan1rRJutbOo9axk8TJW0X7EYpjN /qdmU0tbj66Wsq5tycFii84Gnra2wMXgZ9+qo9xa1oNQI99kgsvchyI2tMZFKPsC5b+WNve6 hhvuVKEb3cFcjGSBvR92x5vd5/q1u97Vp1YPKV7yutdn5sUtei8CTGD6h1dpRC71Nvve4GqX qNydL0VWqcVLLrSK1B1Ue/s73v/2Vb4CnogwBznMlaI1ubLlL4Np6+DERpi+bbTkfXn7w+kW yoQbbm6HJ9vaD4u4iKw0Ij3NCkuspTXFzF1xgF38EAIL8zjWRBeJF4xj/8a3xTz2cSuD7EUl WrfIqV0xi3lskfqG6L5Y/W4cbwzlKN8WwlT2SEaXt1sUdxm1Ut5x/pg7ktD0wdbMZ+Zsms+7 5tdmubdb1nCc8zpnMNdZQ3e2MOH0vGe2fhnJf2ZImwW9Xi4X2rB9RnSiFTLmzhH50ZA+9KRB 0ubAwhnTfNb0psVs1gl5+smgxmukR03qJSqUpahOtVpXzWqOhBfPg5Y1ZNNc3FoDGoinBpeu H0trX2eEp7E0JO0IPeynitrYGKFZbC/bO0c326nFhnaVG41GWBbg2+Dm3rW9+mxtVwS25sIY AMDN7na7W9zjfmm5zS3hc+1Nk+7Ot7713b54+3Pe9I7I3srswX0b/ODsxsu74R3vbAdc4FS0 IQkRTnGDr7viCW8eqOcsaXNnU93sw7jI/hM+copDsr8cf/i5jQlrCZV85Ap/OcYvnu+Yyvm2 Hdc2vHhqTJnP3OcVjznQv/3IpuqYziovcDCXXEFlY3PoCBc61Pk9dYu3m3e2BS3SH24fEd9F VsFmWdWtPnaql/3dQV+dc7XuZ48XmMJAZjQLpX72cNcd7XcnOs1ljvXSHb3tOn+712VIY4hN Ju90r3viy773s2fOk0dOuiU75PUZu65GBsi8AXg39Mbf3fOOz/vVw/j3nH84c0r/8aIxr/nW t57zJhe93WUPesUTgPSRl7x/Yqz0ChfeWK4PvvAzD3u9y57ox6+94wlwe8iz3fRJlvGP4/57 vAz/+tjffPFD/k/74xOd+c1HXu51D5HVmzr76E+/9rlX8sUz3vsFAAD4w3+78ZPfIZ2eo/r3 z//Xs//qyad8jDd/9Adfz3d/5RdoOdJ/DNiAwQdJYyeAyzd/TeRwCEhppTY5DriBHJh9MaV8 EjiABFiBq+UtV3aBCNE/c8QyHdiCLtiAj5R8BMh8JPhcCzB9KAgiF6aBL9iDPsiBzTN18jeD BchrOYh/X/RKAPCDTNiEHRiEQUeENCh+z3WESOh0GeaEWriFT7h98SeFU1h/oIWDVmhgFZNs S8iFariGQMgfYBiGBhhWJ/gjIbZ7/PEjGjFhc7h0wUR5g8cw0mZjaciGhFiI/DeE/mBYg9tF hr3HITKWert3bJHYe5BIYJQIiKTlZMBniJzYicKHiFKoiHDFiJcYIpRReTEWYhxiil0HIpP4 Yo0oQ5hobxE3iJ54i5wIikQoihVFii6yRUUEY7Hoh1rUisUIjCn4irwnjMfIe+xCcM6ySwuI i9RYiLo4g6K4hwnRdcHYh3Qofae4jH3IjIOnenWYir4IKgOnKgLQju7ojjFVjfLYgtc4glRY UhJ2jN3oisQojqw0Ya0UkHj4ikeUjmEiZBLyjgq5kAypkB/4kP8zj/T4hkU4ivhnh6l4if8o joMkjOSIg5Y4jH+4LB/Hjg15kii5kHiRkiyJkgDgkLwj/pHqV48USIXamIJ1SHkgiY7E6Ebn OI6tZIzgKH2zqDRg15JI2ZAvmZRMKQAriZQxKZOvR5EkeJNluBBkVilNuZVOyZVQ6ZUwuTrV SJPgV4FWeZVYeWLOApZQuZRseZJu+ZZwGZVrSJY0qDpoSYdEtIcKtjxyyZJx+ZcOKZgtGZjN w4R2eXuOYZD3p2RmiFlPSZgqGZiSGZmSqZRJyT0OmJgA0BiMmYMeyXS6c5kMSZmVSZouKZiH iX2c6Zl5uY2QqJcmiZrwSJvtaJq0aZm5yR8PSJV3+JoCSWGWd5S2eZu4+Ze6WZzHuZu9+Yad +Zko2JFM9yfFWZu2uZykiZ3Z/hkAtrh5FHl70HmBBfmHAKOdcpmcp1md72ielRkA3Ol6iXl7 wAkiv2lfvvdAk5Gb1cmeqqmeDume7zmVzjmf0SYrA3CgB/o/XMmfC8qg5+mf6wmgAap5dnmW BKpoBoqgGrqhGto+k6mcEGqdIQoAEjqhxJeIZFifePibI5mPAxmUHfKT4Tk2CsahNnqjNgqR Oro66omeylmiJuqdoQibwLiXsemMVfaNAtmMTKqRElSjOBqlUjqlVFqlHco7/RmitwmkQUqT jGiOjyicPLmRLCqjpbikzDijVQOlVtqmbvqmVso9mamlW8ql3VmPvnhl3RiayFiJPVmJS0qe fYqk/i/EpnB6qIiaqDfaPINJpyTKpV2KjT2mk/pon6zYH9KJeqoXqDLUj2p6NIaqqKI6qqSK pRD6qJB6pyMoEXvapBhJiZn6ooIqq7EISKFKqriaq6Jqqu0Jqe6pqmWZjuPph+TYp47JpMU6 fSE5nraaobr6rNBaqjzqlaiaqs0JnpPaipTqim9njD4plIQqi6Von0J0q9F6ruiKqNOaktVq rfB5lxfaaiyTrvRar7u6rk7pqxLanUL6qfG6jX9irwI7sIrKH/q6r73pr/+aggFLsA77sG3a rr46Gf63sHY2rxCbsRqbowcLoJ15gyxqsbbmrBtbshkrsakKHAorsjqI/rEm+7IOi7J2+hsr y7LTaSwwm7MDK7NA+rHeYrPyirM6O7TpyrMlujpAO7IuS7RMq6tGu68/m7RsRrJNW7W72rG/ eoNSO2B82RsgixdWG7bqirXcWbMiC3fUp7KrI7Zsi6NP67Fma7FoW1CH8rX80bZs+7Zlu7UD Rp51ayG8g7c6+7YWyrfJ6Iyq87d1G7iC+7BPW7iGy61n2qmTobg78rFr27hFe7Bxa7NzS2mr Y7msFR+Mq7mjarSdq2jKeG5rRq5c+0Hw4bOiqzqmC6c8m7qq26KsSqChK7uWGxylW7sca6ek WKbcWIxW5qljWqmXGq68G7q/e7mZW7soa6FK/gYkG5m92StIfxqS/2qOsBu9i0mztNu2Elu4 1zt5PJmme4mpsKipkUuf4bu4hxK8OXu+F6m9fLqtTQpjAMmRtBq/OJm4wCu+Jpg5JtuujJm+ GdmM4bi9g8rAAsyq0GvAwDu99lqtn/mtfyp4C5KmyyudfIi7VkXCJ1HBFnzBCHyuqAq5Eyxh JmwS4MsfKTy+nonBifqoLvzCAuekTME7v+u7sYvDVEqiO8zDuysZBBy7FkzEG2rESKxKnHbE lETAQlzDpUvFUVx+r6W7PQHENTzEWrzFPTYSMXzCeknDYRy1ZMxpZlwVKCy6bUwUZ4xRcQy8 czwUdezDObXEWpvH/kGxx2PMRqgHyOYUsrbGx4FsyGVRrEWxx4z8E/0YyeVUyFMMyZTcyFLs vJnsI2eMtp1sq4McynIDyqRcqF58yvJjytE2KpisylnhuscmwrC8ykday6jcqbgcQrS8y9HT y74MO8D8FWZryZaMf8a7IdqYvHo6ym5HlGSxsic4yVw8qMiKpojrj8HsEm1kZfoornwYzjH6 za+avNm8qaj4qtrLydtMEgxcJhLsvy6yiuMMqP9YyHpKkCuqou0MWO6rv6lXn90cwesc0Jh6 h8z6iwkNqx5s0P2MUAR9rNoseD7J0Ej6v4QKwuUYmxidK8v8mXtBwTCMJH8RF+O8Sg+M/tKh 6b/yPIkS3L+37I+0/MpsscOGIdKIISkmvY/d2r+s2K3E6ogX7crQbMzdnM/gnNCynChnghcp oh/fgQB3AiBwIhCiQRp1ghkRoBkHwBkXQCJdvSAo0hmfsY15QRsK8jjKymqE4RkTMNZ4UQG0 YRfikR1GEqPMsSbKoRhSrST6MdZxAh1yEpTl8ct4ydZCDc95kSBKGiSEgQEPcBp9KCCHTdgf 8tBUodhmkh8rQiIF8oib7SIkQhsc4gAE8oswGtqYndl54dZwXRu0ARpJIiUCcSSOzSGu4Yie QRpDUiT0WdirPRVNDQBPjRdRzRp08iYEIRp/cdsagCL3gSdPzY0m0vHbeJLWwf0UtH0Ri3LC ihEp2S0VjlIqGBHSJTHeSELeao3UejmURA2U4S0X34rNGimm8S3fyIjOrgqLqXzfZzHM3DvN /O3fcAHgG+3KrEzgaGHgQ82tNK3gScHg18zfDw7hSGFfzGrOy6vIFt7hHv7hIB7iIj7iJF7i Jn7iKJ7iKr7iLN7iLv7iMB7jMj7jNF7jNn7jOJ7jOr7jPN7jPv7jQB7kQj7kRF7kRn7kSJ7k Sr7kTN7kTv7kUB7lUj7lVF7lVn7lWG64AQEAOw== --2oS5YaxWCcQjTEyO Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smpbench-user.gif" R0lGODdhuwEOAfcAAAAAAAAAewAAvQAA/wB9AAC+AAD/AEpNSmNlY3sAAHt5e4SChIyKjJSa lKWmpa2yrb0AAL26vcbHxs7PztbX1t7f3ufj5+fn5+/v7/8AAP///wAACIBg3ADwzgAXvwAI 74AAAvCwABERADAAlLmw8BEREQGUG+zwthARAAgAAC4bpLm2zhEAvwAA7+YboBa2HwMAAwIA OACwzAARv24EswAACsAAJAIACOY1CBYuzwMPv+kA3BawzgMRvwIEYAAAUAAAJYA1BvAuABEP AAAIAEgA8M2wzg0RvwwEigAALAAAJDAACLmwzxERv0gE3LkAzuE1YAsuUA8PJQgICPTIbsC4 ABIRwAgAAgNoXgDNAQC/AADvAAAEALgAABEAAExgeALwzmAADPCwzxcRvwgA73wAA86wAL8R AO8AABSUzs7wdxIRJAgACAAbDNC2AACMALi6AEwAFAKwAAARAGAE9PAAwBcAEgA1A7guAMj8 AM64uL8REbeYAC3NCAS/AFYEYC0A8AQAFwBg/wDw/wAX/wAI/zwAAM+wAAAAKMCwABwRADyU AM/wAAAAOMAAzhwAvwBvGQAxJAAPA/gAAECAGVbwJAMRAwA8YMC68BwRFwBgLgDwPAAXDwAI CLsuUgE8AQAPAA5SKQEBAAApAACA3AHwzkDAcM+6z78Rv+8A7zwBAs/sAL8QAO8IAPi2XM66 zXxgAlbOAAO/AAAK/8AA/xwA/7tuXAEAzQDAvwAC7w5gZwHOzQC/vwDv7wBrDQDOAOgAvtHO Ob+/D+/vCABvXAAxzQAPvwDOsAC/EQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAuwEOAQAI/gA1CBxIsKDBgwgTKlzIsKHD hxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fP n0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZs2jTql3Ltq3b twQrMBAIAMDFCQo2KqAAt69flnU3HoiwMcKBv4gTi6wbuDEABQAGN4g8QaCDug0KRgBQQUNg z3YpQAbA4IJlzHQf560AQILi17AzfnZMAUPd2pE1XL5wgTRByKmDHwCAoXfe3b3n1u1MN2/s 59AfzrY7PThjxgSrg9YwmoFr0Ne3/g/83HKB+fPoo6tnWl27Y4Tu7Wqo8AABAATix8sPztK8 hQUWBChggOgVaKB56yV4U3vyVTeZBMn9Jt9wF1AQGGSm5fZghOR55lxK/hE44IgklijggSgi qOCKIU0wnATviffZZb4RtBlfLgLwQGAYTPaYabrVNVd+Fn5n0nkjAmjikkwCwOSJKR7I4pQq HfDARg8cdqSSJHL55JcBOgnmmE5GKSWVaFKEl16VjYTkkl6O2aScYIpJp5kGpqlnUCGSeN2f gNopp6B0mkhooSUSimeBezaqUp8j1iXApJRWaqkAgWYaKKKJcjqnp/+h6OioGr3pJwCXpqrq qpKmqimg/p+C6qesJi5A6q0UQTogY6v26murvgb76p+0hllsl7gm25CpkaIa7LOWAgsttNJG OyxjsR5LoLLcHuTfoRZUO+2vzo77rLjmUnottsfa2u27fRKKbrqXzktvpfbei2+51q4L7onv KstsuAJmqu++B7PKb8L1LqxvptsGTKquBRc8wMUYD+Cvw5Pm+zDHDHcMcsiYiumuxHoOHKnF GbfssssbGzytxwmPHHJdAZiMcpoUdxrmy0AHLfTQMcvMMM0HAxDA0jrvzGLPBcc89NRUVz11 zKoinfTSTEfstHoq7wpAAWSXbfbZZBcNqNVst/3yuiRHy3XX/30dHdRRo633/t58F1AX31K7 LXjVw6aL89w5e223YniH+3ffkAM+duSU+33t4JgHXbjciNN98uJ+hZ135aSnPXnppT9u9rCZ t94yoJ1z3TTocDXOGOqkq4475brnrqnrmCsde+J1097Wef86vnvlvS8vufN9+ws8zMMn/rnx aMWb6OnQ791892d/D3743JO/MeHVl4l9WrrKm+n4lsMPuPzR0/97xsLHrv76ZIUtrwEADCAA Y+a98tHPdAfUm/jkx5jXpa94/AOL7SIlwApa8IID3BgDDZjABTKQAAQAgAOHt78IckV0u6Ig BlfIwhYagIAFTKACZUg+EIZwhJ2bnQmx0riV7cqF/kAMohAzeC0aehB+ALAhCEWIPxIqbodU 6eGsfjjEKlrRikXEHQc7qMQl4hBxOoQiVFCYrXBd8YxoTOOw0HbE8dWli15sov7qcj0xtgQ7 qdkPHh0ixTICII2ADGQg/XXAJMIxjhjLHxifaMeV6NEz44EkXRhCRjKpUJCYzGQm1Sa5Q9qQ iYl0IgQbCRPqRPKRCemjJamoyVa68pUV1JQnlQjKiylybmEk5R0lCUlUGkSVg7okLIdJzFca cpY3lGMOGalLlTTolJHUDwDipK3/FfOa2BwkMhFpS1HWsZko8aUpJ1mQ5NHKmtlMpzqDeMxZ 1vKWuGQmOEuyH16Ok5fj/tHWFAu2zn7684Lt9OQ7HzjKeZrkT3mU5kHMeU5W/vOh6wzoIQfq TYMChaGyEtQfIcrRdEoUjhTVnzwtuiB97tOMHU1pMT9Kyy8usqAkzQlGQaXRbKrtOioFJEs/ 6dJ4wjSmJTVpCvl5RbVB4KhITapS67LUTOUUiDvlpsYI+k2g1mSmnqrpEK+j1K569atJZSpY u+rUpwYwqskMZUWtqhOsckqrLQTUWOcKVrHSla6a4ihaaznVtbIVJ25FlJgYw0LGHNWud00s BACg2MaS9aaE1ek2+QpP2Y30r6UUqtgGC1C7ItaxY/0saB0r2ruqzYJ77allf4rZmASWTnVx /qhhkVra0TbVtrhlLG4TG1kBplaZy2Rta1/y2jo5yX2i1e1uv6rc5Sq2ts4NawISsFHfTla1 nhtuUI8VW2M5rrTQ3W14o0tW8s4VANOlLmqvC9yXVlW7Linu9prV3Nual7b1vS9z86vfxaI3 vdU9K3vVKlLhwhcw59RoeMdrWwbr18HO/W961RvLAXfTrwd2LU3tNNu68ne/kO0vc0XsVQlP OMADtHBfRfreDDvyrRz+cFjVloEa2/jGOM5xBjRlXggvty4TPvF6kUnZ9E3TxTN5bXcdF1rG 6PjJUI6ylHH8qsbK+MFBDjKKX6jiynatxUgO56Bi7GEATPnMaE5z/pR5PGMSkzXLWh6yO7Fr vTBr+EtLrq2T1cznPvuZypDtsJVNDGcKW5fIdC6hne/4pDzn9zp/jrSkJ83nmxY6y1v+LYHd u2jiLsnRTTUzpUdN6lJLmtCXznSXMdzpitQzPOBZ6HzDpFxIm/rWuM41lFFdaBSjNa0XDi6Y W82QDr06mtlpVtQOWxddO/vZzuY1nH29TWCvmNPEpsg962lPg8R42XuGtrjHPWppY7rCqy7w sLOtED3i0Zf5dHS4yU3vevfZ3HE+NKLbu9p1sxs+C+22NBVs74IbXM34FrK+58zv7P57Itye JLzpEqmDW/ziT044gNG970371N8PLyey/rft7Ypj/OQY1/h0qZ1uYYdcIq8mzx6TvSuU2/zg Kjd0iluO7ZeTRF43D3q9c87yjl+75z5fjMmFzvRnE53jDA+2y5M+EqA3/eq5fvrCBdpwh1M9 JFbHuthJrXJVW9jLxAP51yG+9LG7PdJll3PUj/7xtYO97W/PO8IvrfCtgzTRl7W7RcKu98Kf Oe5QnyjgDSx4V+Pd8JDXMeL93sUis7rxsnl85Ddf48kL2Oh0lx0dMe8RwnOe857f+dxD73XS a8T0p4986rkMerTn0vWD13zsCz97TUsd6bi/COx3z3u+bzzxf+962oP/et0T/+295znwma9t 5z9/7NGvPVWp/o+R4V/f7dlfve0Dz/1iW//7Vw8/15Wv6PKzveboL77xda769Xs8nmp3f8nh H/+8q1/x7Md4+tdu59d/Qfd/yXd/lpV/SRdz7hZxnlGABmhzCFh52HV7ridz0ERONEdrEwh9 80d/tCd+l5eBAtdLyJZPjhMuHwh+IWh2JKhu+idOJyhNBdOC2PeCcgeACrh87keD8MYuN4iD WFeBLdV1GGiCHEhy5SSBRIhzOoh8FoiE5Cd4QJiCFMd/Tyh0RshTVCiAVpgdMtchKjiEW8iF UUh5R9iDSTiAC+F9Z3hxXShVXtaGbpgQcBiHUDh/MGh/v9dvdwhzTqiH5DaH1laH/lUYiB0Y JoR4c4YYUjlkHjOniASohY0oh2n4eXNnewsAgZSIh4N4iU6XifXHg6yXM574ifARiqKoa4/I fqoIEYciaq24h8bXh6ZYh6kYi/tnibU4dKQ4gn5YWWQIdtnxeiSVh784iny4g1N4f8VojFjo asnIistIdsEYVZaHS+22R++GgrAWa/j0TOJoSuH4jRaljNeYddmofdzYbhvYSw0yTiR3bOQo j0vYbbsoRuq4jrc2h9uYM8UWj0xIjuERcwPHhPKIHfsIRf3oj9jYjjGIigMpcQRJTvV4jPeY jxZ5jOlojRD5Z1qniX7YV9HobReJSs80j+MoSY90hR1p/lAPGZKTNpKlmIDddJIoiZGzEU0G aY4eOY/3qJI9+ZG+SJO4ZpPCaIpT1ZC8+IYgiZR7R4p79U5O+ZSVaIZSyY5UOVmdGI5YKYbT AYEzuZX3FoL0t1focZWUeGwcWIbzZpamppRqiTxhuZMjt3+DJZdc2Yxq+EkIdZdiOZTelmd8 mZRoWXQCJYmCCY9BuGSMeJhzKZHu1ImN6ZjTWJaSOWWPyJaq+JKZGZWbKXmUKVCXCR9jSJai OZpUVpogdZrdt5qsaWNdqJOw6RCaOZuk6ZdqqJOwxm3UMYmeCY8it1BjuZHDuTi5qZutyZsk SUt4qJHuVoPJCXBiGHAxeU/4/tRIy8mctOmaS0Sc12kdKfiTKwkeD/iW2vmW+eiWutSd3rlj 4NmQxgaO1OmSp0SYoFmcHtmf2lmdXwOf3vl/bNmTQAmW+YFQQHiQeJmZ6MiedjSL8eln6meb AXeg27mBwJmXG8qfmemhAOo0EjqhlUaZFqqe+ImCF9qeHBqP06iPIApOI0qiaZZ9JzpwGBmT xSmUHOmSRdmf5fSjODpPAqqbNnqbH1Gksxl9IYqkWRmZNIpmZVcXvtWkTgqKRxmlGfeCkoig V9p8WaqlOVZ2BmKlXyprYSqmN0ama3mmpSebS8qldummHaGkrDmlgUmnYKqVarqlfMiYegpx 0Yhc/rTYp815i5YZqDAXmgRSIJnSp2Rqpl86cREYKosSKBM6pYoKcZm5KGaCqZupcTe6qXjp gIzhqZ76qEiZcKNKqvwZcQ94Hah6qaD6i6zqqpwKobsYKLO6lihSq3GIb6n4myKHoJK6nZOY UOiJopiVrIL6J586Taiqqh9obsMqnfpxn7Lhn68Koy+Kebwqib2aIsBKfNLmm4WZrUHIk+d5 jkIKpLDqojxafpkyrtEKKKg3bftYnxiKovqpny4Kr6XakpQafMAJKPZ6IHT0lX/if5h2lQYK jsIZqwoZnAyJnQ4qpCw5gPSJsL0qreSKr0yHasOJoeupod2qoxkarx7a/pLfGpbh+qv2Sq22 uHINYY856on0eJHZiazWqaLlWYNXGq4gm7COKrKFeGLSgY7niZ3zSoPlOJiw+q7LqqzadazO 5LFG+6tIi5g2i6uLgbXOFKTQurW+2qVdC3crJ7ZgW6xF0bFl+7F4Uq6HR11s27YNWhUxK7Mz m7ZjSl14W3VgEbNFa7YM27Cdd7eB27Ib4aw9Ua+Gq7COu7iNm6QvyxMHG7eGq7iUC6SWSxRw K6sz27lGwbkypbXkSrpvGxZ7a7qqK7iL8bZ5+ro+4br5sbq0e1Feuq22S0+5SxYn+7sOCaHC u0OzyxGTW7wJwrkFq7zLCxLN67zYk7zSCzrR/lu9ynm51KhQ2Asd16ttUNu9sUG9nPq94osy sXq+tBO+6iuiedm+Afq+8LszDji/9nu/pHKseXq8xeaux4maFCuW+CtT3dehIYqzPMutLmu+ A4y8/0ue9Jia3Ouj9qmRVvugQBu0WPifPtvAP5eS1gGwPfuTC7mx+1nC2sGs7GmxVLsnJ9mq GrAmEQHD2boXf8GgI5yQebSxQNu0I3eQOKyeyOm5O7uENLwiMDwYMNekhuEXJ5yRK6zBBdnB VKzC8krEAtehaTIjdeEAqbEjCGAaoiEkQCIQm9EZdQEZkkEZGnAB9nEAlREYEwAAXhwkAJAZ qDkfrdEXLLmfjdGi/tsBmn0cxSyqoxxMqSopv71bFoFxGRMwx168HKwxF8NRHI8hIamBGwCA G4cRxp5xGHUByafBGzWSrh7ixEDJkxnsjRFMwhoIrxKMnulbtUa8rlarJzGSy3bRHUbCH/Gh ARjwAKOBnt8BKHl8u+iLsS+nyzIiH/RhH/iRrc0cHPbBGsHpAAcQzS/MzHYTKF/XyADwyHQM GhLAGpmBIZ+MydMcyADQG8EZJJ2xIaUcpM3hwVDBxeMMGmBsGj2SxmWsATeyznJMx+9hIXVM I0NinBpQJPb8FLmREVZyErmRJQ3tFAwQzhohwyRx0ZWhAG1S0SAd0hE0c2SZmpm7w4ssnNJH QZQDm6HaqtJqIcgDq7MaDNNpwb7tKZzya9NogdNCm7kMzNNd4dMTR9MuLdRjQdQJnMVIHdP1 6ZOx7KNB3dRUXdVWfdVYndVavdVc3dVe/dVgHdZiPdZkXdZmfdZondZqvdZs3dZu/dZwHddy Pdd0Xdd2fdd4ndd6vdd83dd+/deAHdiCPdiEXdiGfdiIndiKvdiM3diObVUBAQA7 --2oS5YaxWCcQjTEyO--
Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?19970501194412.06645>