Skip site navigation (1)Skip section navigation (2)
Date:      Sun, 12 Aug 2012 23:10:09 -0000
From:      Stephen Montgomery-Smith <stephen@missouri.edu>
To:        Bruce Evans <brde@optusnet.com.au>
Cc:        Diane Bruce <db@db.net>, John Baldwin <jhb@freebsd.org>, David Chisnall <theraven@freebsd.org>, Bruce Evans <bde@freebsd.org>, Steve Kargl <sgk@troutmask.apl.washington.edu>, David Schultz <das@freebsd.org>, Peter Jeremy <peter@rulingia.com>, Warner Losh <imp@bsdimp.com>
Subject:   Re: Use of C99 extra long double math functions after r236148
Message-ID:  <50095CDE.4050507@missouri.edu>
Resent-Message-ID: <20120812231002.GS20453@server.rulingia.com>
In-Reply-To: <20120720184114.B2790@besplex.bde.org>
References:  <20120714120432.GA70706@server.rulingia.com> <20120717084457.U3890@besplex.bde.org> <5004A5C7.1040405@missouri.edu> <5004DEA9.1050001@missouri.edu> <20120717200931.U6624@besplex.bde.org> <5006D13D.2080702@missouri.edu> <20120718205625.GA409@troutmask.apl.washington.edu> <500725F2.7060603@missouri.edu> <20120719025345.GA1376@troutmask.apl.washington.edu> <50077987.1080307@missouri.edu> <20120719032706.GA1558@troutmask.apl.washington.edu> <5007826D.7060806@missouri.edu> <5007AD41.9070000@missouri.edu> <20120719205347.T2601@besplex.bde.org> <50084322.7020401@missouri.edu> <20120720035001.W4053@besplex.bde.org> <50085441.4090305@missouri.edu> <20120720162953.N2162@besplex.bde.org> <20120720184114.B2790@besplex.bde.org>

next in thread | previous in thread | raw e-mail | index | archive | help
This is a multi-part message in MIME format.
--------------030904090805050607040500
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

Bruce,

I worked quite a bit on my clog function last night.  Could you look at 
this one?

The trick for when hypot(x,y) is close to 1 can only work so well, and 
you are testing it out of its range of applicability.  But for the 
special case x is close to 1, and y is close to zero, I have a much 
better formula.  I can produce three other formula so that I can handle 
|x| close to 1, y small, and |y| close to 1 and x small.

After fixing it up, could you send it back as an attachment?  That will 
make it easier for me to put it back into my system, and work more on it.

Thanks, Stephen



On 07/20/2012 04:19 AM, Bruce Evans wrote:
> On Fri, 20 Jul 2012, Bruce Evans wrote:
>
>> I was going to leave all the fixes to you, but now want to try the
>> approximation for tiny y :-).
>
> This version now beats Apple clog() for accuracy.  The maximum difference
> observed is down from the exa-ulp range to 16 ulps with all of the 4-16
> ulp differences checked against pari being innaccuracies in Apple clog().
>
> 2**28 cases were tested, but most of the errors found look like this:
>
> % x =                               0x3fe0000000000000 0.5
> % y =                               0x3fec000000000000 0.875
> % loghypota(x, y) = 0x3ff7fe054587e01ea000 0x3f7fc0a8b0fc03d4
> 0.00775209326798261336156
> % loghypot(x, y)  = 0x3ff7fe054587e01f2000 0x3f7fc0a8b0fc03e4
> 0.00775209326798262723934
> % err = +0x8000 16.00000
> % pari log(0.5+0.875*I):
> % 0.007752093267982627075427023021 + 1.051650212548373667459867312*I
>
> so my tests barely cover fractions like 1/8 and the coverage may be too
> limited.  New errors kept turning up as I expanded the coverage.
>
> % #include <complex.h>
> % #include <float.h>
> % #include <math.h>
> % #include <fenv.h>
> % % #include "math_private.h"
> % % /*
> %  * gcc doesn't implement complex multiplication or division correctly,
> so we
> %  * need to handle infinities specially. We turn on this pragma to notify
> %  * conforming c99 compilers that the fast-but-incorrect code that gcc
> %  * generates is acceptable, since the special cases have already been
> %  * handled.
> %  */
> % #pragma    STDC CX_LIMITED_RANGE    ON
> % % double    complex
> % clog(double complex z)
> % {
> %     double x, y, h, t1, t2, t3;
> %     double x0, y0, x1, y1;
> % %     x = creal(z);
> %     y = cimag(z);
> % % #define    NANMIX_APPLE_CLOG_COMPAT    1
> %     /* Handle special cases when x or y is NAN. */
> %     if (isnan(x)) {
> %         if (isinf(y))
> %             return (cpack(INFINITY, NAN));
> %         else {
> % #if NANMIX_HYPOTF_COMPAT
> %             y = fabs(y + 0);
> %             t1 = (y - y) / (y - y);    /* Raise invalid flag if y is
> %                          * not NaN */
> %                    t1 = fabs(x + 0) + t1;    /* Mix NaN(s). */
> % #elif NANMIX_APPLE_CLOG_COMPAT
> %             /* No actual mixing. */
> %             return (cpack(x, copysign(x, y)));
> % #else
> %             t1 = (y - y) / (y - y);    /* Raise invalid flag if y is
> %                          * not NaN */
> % #endif
> %             return (cpack(t1, t1));
> %         }
> %     } else if (isnan(y)) {
> %         if (isinf(x))
> %             return (cpack(INFINITY, NAN));
> %         else {
> % #ifdef NANMIX_HYPOTF_COMPAT
> %             x = fabs(x + 0);
> %             t1 = (x - x) / (x - x);    /* Raise invalid flag if x is
> %                          * not NaN */
> %                    t1 = t1 + fabs(y + 0);    /* Mix NaN(s). */
> % #elif NANMIX_APPLE_CLOG_COMPAT
> %             /* No actual mixing. */
> %             return (cpack(y, y));
> % #else
> %             t1 = (x - x) / (x - x);    /* Raise invalid flag if x is
> %                          * not NaN */
> % #endif
> %             return (cpack(t1, t1));
> %         }
> %     } else if (isfinite(x) && isfinite(y) &&
> %         (fabs(x) > 1e308 || fabs(y) > 1e308))
> %         /*
> %          * To avoid unnecessary overflow, if x or y are very large,
> %          * divide x and y by M_E, and then add 1 to the logarithm.
> %          * This depends on M_E being larger than sqrt(2).
> %          */
> %         return (cpack(log(hypot(x / M_E, y / M_E)) + 1, atan2(y, x)));
>
> Important fix here.  1 was added to the log() arg instead of to log().
>
> %     else if (fabs(x) < 1e-50 && fabs(y) != 1 ||
> %         fabs(y) < 1e-50 && fabs(x) != 1 ||
> %         fabs(x) > 1e50 || fabs(y) > 1e50)
>
> The special case for |x| == 1 and |y| == 1 was defeated by returning for
> it here.
>
> %         /*
> %          * Because atan2 and hypot conform to C99, this also covers
> %          * all the edge cases when x or y are 0 or infinite.
> %          */
> %         return (cpack(log(hypot(x, y)), atan2(y, x)));
> %     else {
> %         /* We don't need to worry about overflow in x*x+y*y. */
> %         h = x * x + y * y;
> %         if (h < 0.1 || h > 10)
> %             return (cpack(log(h) / 2, atan2(y, x)));
> %         /* Take extra care if h is moderately close to 1 */
> %         else {
> % #if 1
> %             if (fabs(x) == 1)
> %                 return (cpack(log1p(y * y) / 2,
> %                     atan2(y, x)));
> %             if (fabs(y) == 1)
> %                 return (cpack(log1p(x * x) / 2,
> %                     atan2(y, x)));
> % #endif
>
> Special case.  It seems too special, but Apple clog() doesn't do any more,
> and this with the other special cases is enough to beat Apple clog().
>
> %             /*
> %              * x0 and y0 are good approximations to x and y, but
> %              * have their bits trimmed so that double precision
> %              * floating point is capable of calculating x0*x0 +
> %              * y0*y0 - 1 exactly.
> %              */
>
> The only way for x*x + y*y to be _very_ near 1 in infinite precision
> is for |x| or y| to be 1 (I think).  Other cases are bounded away from
> 1, and if you are lucky the bound is fairly far from 1 so that sloppier
> approximations work OK.  Mathematicians should determine the bound
> exactly using continued fractions or something like they do for
> approximations to N*Pi/2.  This becomes especially interesting in high
> precisions where you can't hope to get near the worst case by random
> testing.
>
> %             x0 = ldexp(floor(ldexp(x, 24)), -24);
> %             x1 = x - x0;
> %             y0 = ldexp(floor(ldexp(y, 24)), -24);
> %             y1 = y - y0;
>
> This has a chance of working iff the bound away from 1 is something like
> 2**-24.  Otherwise, multiplying by 2**24 and flooring a positive value
> will just produce 0.  2**-24 seems much too small a bound.  My test
> coverage is not wide enough to hit many bad cases.
>
> %             /* Notice that mathematically, h = t1*(1+t3). */
> %             t1 = x0 * x0 + y0 * y0;
> %             t2 = 2 * x0 * x1 + x1 * x1 + 2 * y0 * y1 + y1 * y1;
> %             t3 = t2 / t1;
> %             return (cpack((log1p(t1 - 1) + log1p(t3)) / 2,
> %                 atan2(y, x)));
> %         }
> %     }
> % }
>
> Bruce
>
>


--------------030904090805050607040500--



Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?50095CDE.4050507>