Date: Sun, 2 Jun 2013 04:30:03 +0000 (UTC) From: David Schultz <das@FreeBSD.org> To: src-committers@freebsd.org, svn-src-all@freebsd.org, svn-src-head@freebsd.org Subject: svn commit: r251241 - head/tools/regression/lib/msun Message-ID: <201306020430.r524U3tr097435@svn.freebsd.org>
next in thread | raw e-mail | index | archive | help
Author: das Date: Sun Jun 2 04:30:03 2013 New Revision: 251241 URL: http://svnweb.freebsd.org/changeset/base/251241 Log: Factor out some common code from the libm tests. This is a bit messy because different tests have different ideas about what it means to be "close enough" to the right answer, depending on the properties of the function being tested. In the process, I fixed some warnings and added a few more 'volatile' hacks, which are sufficient to make all the tests pass at -O2 with clang. Added: head/tools/regression/lib/msun/test-utils.h (contents, props changed) Modified: head/tools/regression/lib/msun/Makefile head/tools/regression/lib/msun/test-cexp.c head/tools/regression/lib/msun/test-conj.c head/tools/regression/lib/msun/test-csqrt.c head/tools/regression/lib/msun/test-ctrig.c head/tools/regression/lib/msun/test-exponential.c head/tools/regression/lib/msun/test-fma.c head/tools/regression/lib/msun/test-fmaxmin.c head/tools/regression/lib/msun/test-invctrig.c head/tools/regression/lib/msun/test-invtrig.c head/tools/regression/lib/msun/test-logarithm.c head/tools/regression/lib/msun/test-nearbyint.c head/tools/regression/lib/msun/test-next.c head/tools/regression/lib/msun/test-trig.c Modified: head/tools/regression/lib/msun/Makefile ============================================================================== --- head/tools/regression/lib/msun/Makefile Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/Makefile Sun Jun 2 04:30:03 2013 (r251241) @@ -5,7 +5,7 @@ TESTS= test-cexp test-conj test-csqrt te test-fmaxmin test-ilogb test-invtrig test-invctrig \ test-logarithm test-lrint \ test-lround test-nan test-nearbyint test-next test-rem test-trig -CFLAGS+= -O0 -lm +CFLAGS+= -O0 -lm -Wno-unknown-pragmas .PHONY: tests tests: ${TESTS} Modified: head/tools/regression/lib/msun/test-cexp.c ============================================================================== --- head/tools/regression/lib/msun/test-cexp.c Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/test-cexp.c Sun Jun 2 04:30:03 2013 (r251241) @@ -38,11 +38,7 @@ __FBSDID("$FreeBSD$"); #include <math.h> #include <stdio.h> -#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \ - FE_OVERFLOW | FE_UNDERFLOW) -#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG) -#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG) -#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG) +#include "test-utils.h" #define N(i) (sizeof(i) / sizeof((i)[0])) @@ -50,23 +46,6 @@ __FBSDID("$FreeBSD$"); #pragma STDC CX_LIMITED_RANGE OFF /* - * XXX gcc implements complex multiplication incorrectly. In - * particular, it implements it as if the CX_LIMITED_RANGE pragma - * were ON. Consequently, we need this function to form numbers - * such as x + INFINITY * I, since gcc evalutes INFINITY * I as - * NaN + INFINITY * I. - */ -static inline long double complex -cpackl(long double x, long double y) -{ - long double complex z; - - __real__ z = x; - __imag__ z = y; - return (z); -} - -/* * Test that a function returns the correct value and sets the * exception flags correctly. The exceptmask specifies which * exceptions we should check. We need to be lenient for several @@ -83,14 +62,15 @@ cpackl(long double x, long double y) #define test(func, z, result, exceptmask, excepts, checksign) do { \ volatile long double complex _d = z; \ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \ - assert(cfpequal((func)(_d), (result), (checksign))); \ - assert(((func), fetestexcept(exceptmask) == (excepts))); \ + assert(cfpequal_cs((func)(_d), (result), (checksign))); \ + assert(((void)(func), fetestexcept(exceptmask) == (excepts))); \ } while (0) /* Test within a given tolerance. */ #define test_tol(func, z, result, tol) do { \ volatile long double complex _d = z; \ - assert(cfpequal_tol((func)(_d), (result), (tol))); \ + assert(cfpequal_tol((func)(_d), (result), (tol), \ + FPE_ABS_ZERO | CS_BOTH)); \ } while (0) /* Test all the functions that compute cexp(x). */ @@ -112,67 +92,6 @@ cpackl(long double x, long double y) static const float finites[] = { -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 }; -/* - * Determine whether x and y are equal, with two special rules: - * +0.0 != -0.0 - * NaN == NaN - * If checksign is 0, we compare the absolute values instead. - */ -static int -fpequal(long double x, long double y, int checksign) -{ - if (isnan(x) || isnan(y)) - return (1); - if (checksign) - return (x == y && !signbit(x) == !signbit(y)); - else - return (fabsl(x) == fabsl(y)); -} - -static int -fpequal_tol(long double x, long double y, long double tol) -{ - fenv_t env; - int ret; - - if (isnan(x) && isnan(y)) - return (1); - if (!signbit(x) != !signbit(y)) - return (0); - if (x == y) - return (1); - if (tol == 0) - return (0); - - /* Hard case: need to check the tolerance. */ - feholdexcept(&env); - /* - * For our purposes here, if y=0, we interpret tol as an absolute - * tolerance. This is to account for roundoff in the input, e.g., - * cos(Pi/2) ~= 0. - */ - if (y == 0.0) - ret = fabsl(x - y) <= fabsl(tol); - else - ret = fabsl(x - y) <= fabsl(y * tol); - fesetenv(&env); - return (ret); -} - -static int -cfpequal(long double complex x, long double complex y, int checksign) -{ - return (fpequal(creal(x), creal(y), checksign) - && fpequal(cimag(x), cimag(y), checksign)); -} - -static int -cfpequal_tol(long double complex x, long double complex y, long double tol) -{ - return (fpequal_tol(creal(x), creal(y), tol) - && fpequal_tol(cimag(x), cimag(y), tol)); -} - /* Tests for 0 */ void @@ -182,8 +101,8 @@ test_zero(void) /* cexp(0) = 1, no exceptions raised */ testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1); testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1); - testall(cpackl(0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); - testall(cpackl(-0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); + testall(CMPLXL(0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); + testall(CMPLXL(-0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1); } /* @@ -198,27 +117,27 @@ test_nan() /* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */ /* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */ for (i = 0; i < N(finites); i++) { - testall(cpackl(finites[i], NAN), cpackl(NAN, NAN), + testall(CMPLXL(finites[i], NAN), CMPLXL(NAN, NAN), ALL_STD_EXCEPT & ~FE_INVALID, 0, 0); if (finites[i] == 0.0) continue; /* XXX FE_INEXACT shouldn't be raised here */ - testall(cpackl(NAN, finites[i]), cpackl(NAN, NAN), + testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN), ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0); } /* cexp(NaN +- 0i) = NaN +- 0i */ - testall(cpackl(NAN, 0.0), cpackl(NAN, 0.0), ALL_STD_EXCEPT, 0, 1); - testall(cpackl(NAN, -0.0), cpackl(NAN, -0.0), ALL_STD_EXCEPT, 0, 1); + testall(CMPLXL(NAN, 0.0), CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 1); + testall(CMPLXL(NAN, -0.0), CMPLXL(NAN, -0.0), ALL_STD_EXCEPT, 0, 1); /* cexp(inf + NaN i) = inf + nan i */ - testall(cpackl(INFINITY, NAN), cpackl(INFINITY, NAN), + testall(CMPLXL(INFINITY, NAN), CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0); /* cexp(-inf + NaN i) = 0 */ - testall(cpackl(-INFINITY, NAN), cpackl(0.0, 0.0), + testall(CMPLXL(-INFINITY, NAN), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT, 0, 0); /* cexp(NaN + NaN i) = NaN + NaN i */ - testall(cpackl(NAN, NAN), cpackl(NAN, NAN), + testall(CMPLXL(NAN, NAN), CMPLXL(NAN, NAN), ALL_STD_EXCEPT, 0, 0); } @@ -229,37 +148,37 @@ test_inf(void) /* cexp(x + inf i) = NaN + NaNi and raises invalid */ for (i = 0; i < N(finites); i++) { - testall(cpackl(finites[i], INFINITY), cpackl(NAN, NAN), + testall(CMPLXL(finites[i], INFINITY), CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 1); } /* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */ /* XXX shouldn't raise an inexact exception */ - testall(cpackl(-INFINITY, M_PI_4), cpackl(0.0, 0.0), + testall(CMPLXL(-INFINITY, M_PI_4), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(-INFINITY, 3 * M_PI_4), cpackl(-0.0, 0.0), + testall(CMPLXL(-INFINITY, 3 * M_PI_4), CMPLXL(-0.0, 0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(-INFINITY, 5 * M_PI_4), cpackl(-0.0, -0.0), + testall(CMPLXL(-INFINITY, 5 * M_PI_4), CMPLXL(-0.0, -0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(-INFINITY, 7 * M_PI_4), cpackl(0.0, -0.0), + testall(CMPLXL(-INFINITY, 7 * M_PI_4), CMPLXL(0.0, -0.0), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(-INFINITY, 0.0), cpackl(0.0, 0.0), + testall(CMPLXL(-INFINITY, 0.0), CMPLXL(0.0, 0.0), ALL_STD_EXCEPT, 0, 1); - testall(cpackl(-INFINITY, -0.0), cpackl(0.0, -0.0), + testall(CMPLXL(-INFINITY, -0.0), CMPLXL(0.0, -0.0), ALL_STD_EXCEPT, 0, 1); /* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */ /* XXX shouldn't raise an inexact exception */ - testall(cpackl(INFINITY, M_PI_4), cpackl(INFINITY, INFINITY), + testall(CMPLXL(INFINITY, M_PI_4), CMPLXL(INFINITY, INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(INFINITY, 3 * M_PI_4), cpackl(-INFINITY, INFINITY), + testall(CMPLXL(INFINITY, 3 * M_PI_4), CMPLXL(-INFINITY, INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(INFINITY, 5 * M_PI_4), cpackl(-INFINITY, -INFINITY), + testall(CMPLXL(INFINITY, 5 * M_PI_4), CMPLXL(-INFINITY, -INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - testall(cpackl(INFINITY, 7 * M_PI_4), cpackl(INFINITY, -INFINITY), + testall(CMPLXL(INFINITY, 7 * M_PI_4), CMPLXL(INFINITY, -INFINITY), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); /* cexp(inf + 0i) = inf + 0i */ - testall(cpackl(INFINITY, 0.0), cpackl(INFINITY, 0.0), + testall(CMPLXL(INFINITY, 0.0), CMPLXL(INFINITY, 0.0), ALL_STD_EXCEPT, 0, 1); - testall(cpackl(INFINITY, -0.0), cpackl(INFINITY, -0.0), + testall(CMPLXL(INFINITY, -0.0), CMPLXL(INFINITY, -0.0), ALL_STD_EXCEPT, 0, 1); } @@ -270,17 +189,17 @@ test_reals(void) for (i = 0; i < N(finites); i++) { /* XXX could check exceptions more meticulously */ - test(cexp, cpackl(finites[i], 0.0), - cpackl(exp(finites[i]), 0.0), + test(cexp, CMPLXL(finites[i], 0.0), + CMPLXL(exp(finites[i]), 0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); - test(cexp, cpackl(finites[i], -0.0), - cpackl(exp(finites[i]), -0.0), + test(cexp, CMPLXL(finites[i], -0.0), + CMPLXL(exp(finites[i]), -0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); - test(cexpf, cpackl(finites[i], 0.0), - cpackl(expf(finites[i]), 0.0), + test(cexpf, CMPLXL(finites[i], 0.0), + CMPLXL(expf(finites[i]), 0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); - test(cexpf, cpackl(finites[i], -0.0), - cpackl(expf(finites[i]), -0.0), + test(cexpf, CMPLXL(finites[i], -0.0), + CMPLXL(expf(finites[i]), -0.0), FE_INVALID | FE_DIVBYZERO, 0, 1); } } @@ -291,17 +210,17 @@ test_imaginaries(void) int i; for (i = 0; i < N(finites); i++) { - test(cexp, cpackl(0.0, finites[i]), - cpackl(cos(finites[i]), sin(finites[i])), + test(cexp, CMPLXL(0.0, finites[i]), + CMPLXL(cos(finites[i]), sin(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - test(cexp, cpackl(-0.0, finites[i]), - cpackl(cos(finites[i]), sin(finites[i])), + test(cexp, CMPLXL(-0.0, finites[i]), + CMPLXL(cos(finites[i]), sin(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - test(cexpf, cpackl(0.0, finites[i]), - cpackl(cosf(finites[i]), sinf(finites[i])), + test(cexpf, CMPLXL(0.0, finites[i]), + CMPLXL(cosf(finites[i]), sinf(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); - test(cexpf, cpackl(-0.0, finites[i]), - cpackl(cosf(finites[i]), sinf(finites[i])), + test(cexpf, CMPLXL(-0.0, finites[i]), + CMPLXL(cosf(finites[i]), sinf(finites[i])), ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1); } } @@ -326,12 +245,12 @@ test_small(void) b = tests[i + 1]; x = tests[i + 2]; y = tests[i + 3]; - test_tol(cexp, cpackl(a, b), cpackl(x, y), 3 * DBL_ULP()); + test_tol(cexp, CMPLXL(a, b), CMPLXL(x, y), 3 * DBL_ULP()); /* float doesn't have enough precision to pass these tests */ if (x == 0 || y == 0) continue; - test_tol(cexpf, cpackl(a, b), cpackl(x, y), 1 * FLT_ULP()); + test_tol(cexpf, CMPLXL(a, b), CMPLXL(x, y), 1 * FLT_ULP()); } } @@ -340,27 +259,27 @@ void test_large(void) { - test_tol(cexp, cpackl(709.79, 0x1p-1074), - cpackl(INFINITY, 8.94674309915433533273e-16), DBL_ULP()); - test_tol(cexp, cpackl(1000, 0x1p-1074), - cpackl(INFINITY, 9.73344457300016401328e+110), DBL_ULP()); - test_tol(cexp, cpackl(1400, 0x1p-1074), - cpackl(INFINITY, 5.08228858149196559681e+284), DBL_ULP()); - test_tol(cexp, cpackl(900, 0x1.23456789abcdep-1020), - cpackl(INFINITY, 7.42156649354218408074e+83), DBL_ULP()); - test_tol(cexp, cpackl(1300, 0x1.23456789abcdep-1020), - cpackl(INFINITY, 3.87514844965996756704e+257), DBL_ULP()); - - test_tol(cexpf, cpackl(88.73, 0x1p-149), - cpackl(INFINITY, 4.80265603e-07), 2 * FLT_ULP()); - test_tol(cexpf, cpackl(90, 0x1p-149), - cpackl(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP()); - test_tol(cexpf, cpackl(192, 0x1p-149), - cpackl(INFINITY, 3.396809344e+38f), 2 * FLT_ULP()); - test_tol(cexpf, cpackl(120, 0x1.234568p-120), - cpackl(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP()); - test_tol(cexpf, cpackl(170, 0x1.234568p-120), - cpackl(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP()); + test_tol(cexp, CMPLXL(709.79, 0x1p-1074), + CMPLXL(INFINITY, 8.94674309915433533273e-16), DBL_ULP()); + test_tol(cexp, CMPLXL(1000, 0x1p-1074), + CMPLXL(INFINITY, 9.73344457300016401328e+110), DBL_ULP()); + test_tol(cexp, CMPLXL(1400, 0x1p-1074), + CMPLXL(INFINITY, 5.08228858149196559681e+284), DBL_ULP()); + test_tol(cexp, CMPLXL(900, 0x1.23456789abcdep-1020), + CMPLXL(INFINITY, 7.42156649354218408074e+83), DBL_ULP()); + test_tol(cexp, CMPLXL(1300, 0x1.23456789abcdep-1020), + CMPLXL(INFINITY, 3.87514844965996756704e+257), DBL_ULP()); + + test_tol(cexpf, CMPLXL(88.73, 0x1p-149), + CMPLXL(INFINITY, 4.80265603e-07), 2 * FLT_ULP()); + test_tol(cexpf, CMPLXL(90, 0x1p-149), + CMPLXL(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP()); + test_tol(cexpf, CMPLXL(192, 0x1p-149), + CMPLXL(INFINITY, 3.396809344e+38f), 2 * FLT_ULP()); + test_tol(cexpf, CMPLXL(120, 0x1.234568p-120), + CMPLXL(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP()); + test_tol(cexpf, CMPLXL(170, 0x1.234568p-120), + CMPLXL(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP()); } int Modified: head/tools/regression/lib/msun/test-conj.c ============================================================================== --- head/tools/regression/lib/msun/test-conj.c Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/test-conj.c Sun Jun 2 04:30:03 2013 (r251241) @@ -37,6 +37,8 @@ __FBSDID("$FreeBSD$"); #include <math.h> #include <stdio.h> +#include "test-utils.h" + #pragma STDC CX_LIMITED_RANGE off /* Make sure gcc doesn't use builtin versions of these or honor __pure2. */ @@ -50,27 +52,6 @@ static float (*libcimagf)(float complex) static double (*libcimag)(double complex) = cimag; static long double (*libcimagl)(long double complex) = cimagl; -/* - * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0. - * Fail an assertion if they differ. - */ -static int -fpequal(long double d1, long double d2) -{ - - if (d1 != d2) - return (isnan(d1) && isnan(d2)); - return (copysignl(1.0, d1) == copysignl(1.0, d2)); -} - -static int -cfpequal(long double complex d1, long double complex d2) -{ - - return (fpequal(creall(d1), creall(d2)) && - fpequal(cimagl(d1), cimagl(d2))); -} - static const double tests[] = { /* a + bI */ 0.0, 0.0, Modified: head/tools/regression/lib/msun/test-csqrt.c ============================================================================== --- head/tools/regression/lib/msun/test-csqrt.c Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/test-csqrt.c Sun Jun 2 04:30:03 2013 (r251241) @@ -37,6 +37,8 @@ __FBSDID("$FreeBSD$"); #include <math.h> #include <stdio.h> +#include "test-utils.h" + #define N(i) (sizeof(i) / sizeof((i)[0])) /* @@ -63,23 +65,6 @@ _csqrt(long double complex d) #pragma STDC CX_LIMITED_RANGE off /* - * XXX gcc implements complex multiplication incorrectly. In - * particular, it implements it as if the CX_LIMITED_RANGE pragma - * were ON. Consequently, we need this function to form numbers - * such as x + INFINITY * I, since gcc evalutes INFINITY * I as - * NaN + INFINITY * I. - */ -static inline long double complex -cpackl(long double x, long double y) -{ - long double complex z; - - __real__ z = x; - __imag__ z = y; - return (z); -} - -/* * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0. * Fail an assertion if they differ. */ @@ -87,20 +72,7 @@ static void assert_equal(long double complex d1, long double complex d2) { - if (isnan(creall(d1))) { - assert(isnan(creall(d2))); - } else { - assert(creall(d1) == creall(d2)); - assert(copysignl(1.0, creall(d1)) == - copysignl(1.0, creall(d2))); - } - if (isnan(cimagl(d1))) { - assert(isnan(cimagl(d2))); - } else { - assert(cimagl(d1) == cimagl(d2)); - assert(copysignl(1.0, cimagl(d1)) == - copysignl(1.0, cimagl(d2))); - } + assert(cfpequal(d1, d2)); } /* @@ -161,7 +133,7 @@ test_finite() b = tests[i + 1] * mults[j] * mults[j]; x = tests[i + 2] * mults[j]; y = tests[i + 3] * mults[j]; - assert(t_csqrt(cpackl(a, b)) == cpackl(x, y)); + assert(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y)); } } @@ -174,10 +146,10 @@ static void test_zeros() { - assert_equal(t_csqrt(cpackl(0.0, 0.0)), cpackl(0.0, 0.0)); - assert_equal(t_csqrt(cpackl(-0.0, 0.0)), cpackl(0.0, 0.0)); - assert_equal(t_csqrt(cpackl(0.0, -0.0)), cpackl(0.0, -0.0)); - assert_equal(t_csqrt(cpackl(-0.0, -0.0)), cpackl(0.0, -0.0)); + assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0)); + assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0)); + assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0)); + assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0)); } /* @@ -199,15 +171,15 @@ test_infinities() for (i = 0; i < N(vals); i++) { if (isfinite(vals[i])) { - assert_equal(t_csqrt(cpackl(-INFINITY, vals[i])), - cpackl(0.0, copysignl(INFINITY, vals[i]))); - assert_equal(t_csqrt(cpackl(INFINITY, vals[i])), - cpackl(INFINITY, copysignl(0.0, vals[i]))); + assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])), + CMPLXL(0.0, copysignl(INFINITY, vals[i]))); + assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])), + CMPLXL(INFINITY, copysignl(0.0, vals[i]))); } - assert_equal(t_csqrt(cpackl(vals[i], INFINITY)), - cpackl(INFINITY, INFINITY)); - assert_equal(t_csqrt(cpackl(vals[i], -INFINITY)), - cpackl(INFINITY, -INFINITY)); + assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)), + CMPLXL(INFINITY, INFINITY)); + assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)), + CMPLXL(INFINITY, -INFINITY)); } } @@ -218,26 +190,26 @@ static void test_nans() { - assert(creall(t_csqrt(cpackl(INFINITY, NAN))) == INFINITY); - assert(isnan(cimagl(t_csqrt(cpackl(INFINITY, NAN))))); + assert(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY); + assert(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN))))); - assert(isnan(creall(t_csqrt(cpackl(-INFINITY, NAN))))); - assert(isinf(cimagl(t_csqrt(cpackl(-INFINITY, NAN))))); + assert(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN))))); + assert(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN))))); - assert_equal(t_csqrt(cpackl(NAN, INFINITY)), - cpackl(INFINITY, INFINITY)); - assert_equal(t_csqrt(cpackl(NAN, -INFINITY)), - cpackl(INFINITY, -INFINITY)); - - assert_equal(t_csqrt(cpackl(0.0, NAN)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(-0.0, NAN)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(42.0, NAN)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(-42.0, NAN)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(NAN, 0.0)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(NAN, -0.0)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(NAN, 42.0)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(NAN, -42.0)), cpackl(NAN, NAN)); - assert_equal(t_csqrt(cpackl(NAN, NAN)), cpackl(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)), + CMPLXL(INFINITY, INFINITY)); + assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)), + CMPLXL(INFINITY, -INFINITY)); + + assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN)); + assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN)); } /* @@ -254,7 +226,7 @@ test_overflow(int maxexp) a = ldexpl(115 * 0x1p-8, maxexp); b = ldexpl(252 * 0x1p-8, maxexp); - result = t_csqrt(cpackl(a, b)); + result = t_csqrt(CMPLXL(a, b)); assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2)); assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2)); } Modified: head/tools/regression/lib/msun/test-ctrig.c ============================================================================== --- head/tools/regression/lib/msun/test-ctrig.c Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/test-ctrig.c Sun Jun 2 04:30:03 2013 (r251241) @@ -38,46 +38,12 @@ __FBSDID("$FreeBSD$"); #include <math.h> #include <stdio.h> -#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \ - FE_OVERFLOW | FE_UNDERFLOW) -#define OPT_INVALID (ALL_STD_EXCEPT & ~FE_INVALID) -#define OPT_INEXACT (ALL_STD_EXCEPT & ~FE_INEXACT) -#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG) -#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG) -#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG) +#include "test-utils.h" #pragma STDC FENV_ACCESS ON #pragma STDC CX_LIMITED_RANGE OFF /* - * XXX gcc implements complex multiplication incorrectly. In - * particular, it implements it as if the CX_LIMITED_RANGE pragma - * were ON. Consequently, we need this function to form numbers - * such as x + INFINITY * I, since gcc evalutes INFINITY * I as - * NaN + INFINITY * I. - */ -static inline long double complex -cpackl(long double x, long double y) -{ - long double complex z; - - __real__ z = x; - __imag__ z = y; - return (z); -} - -/* Flags that determine whether to check the signs of the result. */ -#define CS_REAL 1 -#define CS_IMAG 2 -#define CS_BOTH (CS_REAL | CS_IMAG) - -#ifdef DEBUG -#define debug(...) printf(__VA_ARGS__) -#else -#define debug(...) (void)0 -#endif - -/* * Test that a function returns the correct value and sets the * exception flags correctly. The exceptmask specifies which * exceptions we should check. We need to be lenient for several @@ -95,8 +61,8 @@ cpackl(long double x, long double y) debug(" testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func, \ creall(_d), cimagl(_d), creall(result), cimagl(result)); \ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \ - assert(cfpequal((func)(_d), (result), (checksign))); \ - assert(((func), fetestexcept(exceptmask) == (excepts))); \ + assert(cfpequal_cs((func)(_d), (result), (checksign))); \ + assert(((void)(func), fetestexcept(exceptmask) == (excepts))); \ } while (0) /* @@ -108,7 +74,7 @@ cpackl(long double x, long double y) volatile long double complex _d = z; \ debug(" testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func, \ creall(_d), cimagl(_d), creall(result), cimagl(result)); \ - assert(cfpequal_tol((func)(_d), (result), (tol))); \ + assert(cfpequal_tol((func)(_d), (result), (tol), FPE_ABS_ZERO)); \ } while (0) /* These wrappers apply the identities f(conj(z)) = conj(f(z)). */ @@ -152,79 +118,18 @@ cpackl(long double x, long double y) test_tol(func, -x, result, tol * DBL_ULP()); \ } while (0) -/* - * Determine whether x and y are equal, with two special rules: - * +0.0 != -0.0 - * NaN == NaN - * If checksign is 0, we compare the absolute values instead. - */ -static int -fpequal(long double x, long double y, int checksign) -{ - if (isnan(x) && isnan(y)) - return (1); - if (checksign) - return (x == y && !signbit(x) == !signbit(y)); - else - return (fabsl(x) == fabsl(y)); -} - -static int -fpequal_tol(long double x, long double y, long double tol) -{ - fenv_t env; - int ret; - - if (isnan(x) && isnan(y)) - return (1); - if (!signbit(x) != !signbit(y) && tol == 0) - return (0); - if (x == y) - return (1); - if (tol == 0) - return (0); - - /* Hard case: need to check the tolerance. */ - feholdexcept(&env); - /* - * For our purposes here, if y=0, we interpret tol as an absolute - * tolerance. This is to account for roundoff in the input, e.g., - * cos(Pi/2) ~= 0. - */ - if (y == 0.0) - ret = fabsl(x - y) <= fabsl(tol); - else - ret = fabsl(x - y) <= fabsl(y * tol); - fesetenv(&env); - return (ret); -} - -static int -cfpequal(long double complex x, long double complex y, int checksign) -{ - return (fpequal(creal(x), creal(y), checksign & CS_REAL) - && fpequal(cimag(x), cimag(y), checksign & CS_IMAG)); -} - -static int -cfpequal_tol(long double complex x, long double complex y, long double tol) -{ - return (fpequal_tol(creal(x), creal(y), tol) - && fpequal_tol(cimag(x), cimag(y), tol)); -} - /* Tests for 0 */ void test_zero(void) { - long double complex zero = cpackl(0.0, 0.0); + long double complex zero = CMPLXL(0.0, 0.0); /* csinh(0) = ctanh(0) = 0; ccosh(0) = 1 (no exceptions raised) */ testall_odd(csinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH); testall_odd(csin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH); testall_even(ccosh, zero, 1.0, ALL_STD_EXCEPT, 0, CS_BOTH); - testall_even(ccos, zero, cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, CS_BOTH); + testall_even(ccos, zero, CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, CS_BOTH); testall_odd(ctanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH); testall_odd(ctan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH); } @@ -235,7 +140,7 @@ test_zero(void) void test_nan() { - long double complex nan_nan = cpackl(NAN, NAN); + long double complex nan_nan = CMPLXL(NAN, NAN); long double complex z; /* @@ -256,7 +161,7 @@ test_nan() testall_even(ccos, z, nan_nan, ALL_STD_EXCEPT, 0, 0); testall_odd(ctan, z, nan_nan, ALL_STD_EXCEPT, 0, 0); - z = cpackl(42, NAN); + z = CMPLXL(42, NAN); testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0); testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0); /* XXX We allow a spurious inexact exception here. */ @@ -265,7 +170,7 @@ test_nan() testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0); testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0); - z = cpackl(NAN, 42); + z = CMPLXL(NAN, 42); testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0); testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0); testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0); @@ -274,38 +179,38 @@ test_nan() /* XXX We allow a spurious inexact exception here. */ testall_odd(ctan, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0); - z = cpackl(NAN, INFINITY); + z = CMPLXL(NAN, INFINITY); testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0); testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0); testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0); - testall_odd(csin, z, cpackl(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0); - testall_even(ccos, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, + testall_odd(csin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0); + testall_even(ccos, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_IMAG); - testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_IMAG); + testall_odd(ctan, z, CMPLXL(0, 1), ALL_STD_EXCEPT, 0, CS_IMAG); - z = cpackl(INFINITY, NAN); - testall_odd(csinh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0); - testall_even(ccosh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, + z = CMPLXL(INFINITY, NAN); + testall_odd(csinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0); + testall_even(ccosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_REAL); - testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL); + testall_odd(ctanh, z, CMPLXL(1, 0), ALL_STD_EXCEPT, 0, CS_REAL); testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0); testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0); testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0); - z = cpackl(0, NAN); - testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, 0); - testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0); + z = CMPLXL(0, NAN); + testall_odd(csinh, z, CMPLXL(0, NAN), ALL_STD_EXCEPT, 0, 0); + testall_even(ccosh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, 0); testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0); - testall_odd(csin, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL); - testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0); - testall_odd(ctan, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL); - - z = cpackl(NAN, 0); - testall_odd(csinh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG); - testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0); - testall_odd(ctanh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG); - testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0); - testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0); + testall_odd(csin, z, CMPLXL(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL); + testall_even(ccos, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, 0); + testall_odd(ctan, z, CMPLXL(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL); + + z = CMPLXL(NAN, 0); + testall_odd(csinh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG); + testall_even(ccosh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, 0); + testall_odd(ctanh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG); + testall_odd(csin, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, 0); + testall_even(ccos, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, 0); testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0); } @@ -325,53 +230,53 @@ test_inf(void) * 0,Inf +-0,NaN inval NaN,+-0 inval NaN,NaN inval * finite,Inf NaN,NaN inval NaN,NaN inval NaN,NaN inval */ - z = cpackl(INFINITY, INFINITY); - testall_odd(csinh, z, cpackl(INFINITY, NAN), + z = CMPLXL(INFINITY, INFINITY); + testall_odd(csinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccosh, z, cpackl(INFINITY, NAN), + testall_even(ccosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL); - testall_odd(csin, z, cpackl(NAN, INFINITY), + testall_odd(ctanh, z, CMPLXL(1, 0), ALL_STD_EXCEPT, 0, CS_REAL); + testall_odd(csin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccos, z, cpackl(INFINITY, NAN), + testall_even(ccos, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_REAL); + testall_odd(ctan, z, CMPLXL(0, 1), ALL_STD_EXCEPT, 0, CS_REAL); /* XXX We allow spurious inexact exceptions here (hard to avoid). */ for (i = 0; i < sizeof(finites) / sizeof(finites[0]); i++) { - z = cpackl(INFINITY, finites[i]); + z = CMPLXL(INFINITY, finites[i]); c = INFINITY * cosl(finites[i]); s = finites[i] == 0 ? finites[i] : INFINITY * sinl(finites[i]); - testall_odd(csinh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH); - testall_even(ccosh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH); - testall_odd(ctanh, z, cpackl(1, 0 * sin(finites[i] * 2)), + testall_odd(csinh, z, CMPLXL(c, s), OPT_INEXACT, 0, CS_BOTH); + testall_even(ccosh, z, CMPLXL(c, s), OPT_INEXACT, 0, CS_BOTH); + testall_odd(ctanh, z, CMPLXL(1, 0 * sin(finites[i] * 2)), OPT_INEXACT, 0, CS_BOTH); - z = cpackl(finites[i], INFINITY); - testall_odd(csin, z, cpackl(s, c), OPT_INEXACT, 0, CS_BOTH); - testall_even(ccos, z, cpackl(c, -s), OPT_INEXACT, 0, CS_BOTH); - testall_odd(ctan, z, cpackl(0 * sin(finites[i] * 2), 1), + z = CMPLXL(finites[i], INFINITY); + testall_odd(csin, z, CMPLXL(s, c), OPT_INEXACT, 0, CS_BOTH); + testall_even(ccos, z, CMPLXL(c, -s), OPT_INEXACT, 0, CS_BOTH); + testall_odd(ctan, z, CMPLXL(0 * sin(finites[i] * 2), 1), OPT_INEXACT, 0, CS_BOTH); } - z = cpackl(0, INFINITY); - testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_odd(ctanh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - z = cpackl(INFINITY, 0); - testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_odd(ctan, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - - z = cpackl(42, INFINITY); - testall_odd(csinh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccosh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + z = CMPLXL(0, INFINITY); + testall_odd(csinh, z, CMPLXL(0, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_even(ccosh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_odd(ctanh, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + z = CMPLXL(INFINITY, 0); + testall_odd(csin, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_even(ccos, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_odd(ctan, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + + z = CMPLXL(42, INFINITY); + testall_odd(csinh, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_even(ccosh, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); /* XXX We allow a spurious inexact exception here. */ - testall_odd(ctanh, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0); - z = cpackl(INFINITY, 42); - testall_odd(csin, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); - testall_even(ccos, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_odd(ctanh, z, CMPLXL(NAN, NAN), OPT_INEXACT, FE_INVALID, 0); + z = CMPLXL(INFINITY, 42); + testall_odd(csin, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); + testall_even(ccos, z, CMPLXL(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0); /* XXX We allow a spurious inexact exception here. */ - testall_odd(ctan, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0); + testall_odd(ctan, z, CMPLXL(NAN, NAN), OPT_INEXACT, FE_INVALID, 0); } /* Tests along the real and imaginary axes. */ @@ -387,26 +292,26 @@ test_axes(void) for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) { /* Real axis */ - z = cpackl(nums[i], 0.0); - testall_odd_tol(csinh, z, cpackl(sinh(nums[i]), 0), 0); - testall_even_tol(ccosh, z, cpackl(cosh(nums[i]), 0), 0); - testall_odd_tol(ctanh, z, cpackl(tanh(nums[i]), 0), 1); - testall_odd_tol(csin, z, cpackl(sin(nums[i]), + z = CMPLXL(nums[i], 0.0); + testall_odd_tol(csinh, z, CMPLXL(sinh(nums[i]), 0), 0); + testall_even_tol(ccosh, z, CMPLXL(cosh(nums[i]), 0), 0); + testall_odd_tol(ctanh, z, CMPLXL(tanh(nums[i]), 0), 1); + testall_odd_tol(csin, z, CMPLXL(sin(nums[i]), copysign(0, cos(nums[i]))), 0); - testall_even_tol(ccos, z, cpackl(cos(nums[i]), + testall_even_tol(ccos, z, CMPLXL(cos(nums[i]), -copysign(0, sin(nums[i]))), 0); - testall_odd_tol(ctan, z, cpackl(tan(nums[i]), 0), 1); + testall_odd_tol(ctan, z, CMPLXL(tan(nums[i]), 0), 1); /* Imaginary axis */ - z = cpackl(0.0, nums[i]); - testall_odd_tol(csinh, z, cpackl(copysign(0, cos(nums[i])), + z = CMPLXL(0.0, nums[i]); + testall_odd_tol(csinh, z, CMPLXL(copysign(0, cos(nums[i])), sin(nums[i])), 0); - testall_even_tol(ccosh, z, cpackl(cos(nums[i]), + testall_even_tol(ccosh, z, CMPLXL(cos(nums[i]), copysign(0, sin(nums[i]))), 0); - testall_odd_tol(ctanh, z, cpackl(0, tan(nums[i])), 1); - testall_odd_tol(csin, z, cpackl(0, sinh(nums[i])), 0); - testall_even_tol(ccos, z, cpackl(cosh(nums[i]), -0.0), 0); - testall_odd_tol(ctan, z, cpackl(0, tanh(nums[i])), 1); + testall_odd_tol(ctanh, z, CMPLXL(0, tan(nums[i])), 1); + testall_odd_tol(csin, z, CMPLXL(0, sinh(nums[i])), 0); + testall_even_tol(ccos, z, CMPLXL(cosh(nums[i]), -0.0), 0); + testall_odd_tol(ctan, z, CMPLXL(0, tanh(nums[i])), 1); } } @@ -462,13 +367,13 @@ test_small(void) int i; for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) { - z = cpackl(tests[i].a, tests[i].b); + z = CMPLXL(tests[i].a, tests[i].b); testall_odd_tol(csinh, z, - cpackl(tests[i].sinh_a, tests[i].sinh_b), 1.1); + CMPLXL(tests[i].sinh_a, tests[i].sinh_b), 1.1); testall_even_tol(ccosh, z, - cpackl(tests[i].cosh_a, tests[i].cosh_b), 1.1); + CMPLXL(tests[i].cosh_a, tests[i].cosh_b), 1.1); testall_odd_tol(ctanh, z, - cpackl(tests[i].tanh_a, tests[i].tanh_b), 1.1); + CMPLXL(tests[i].tanh_a, tests[i].tanh_b), 1.1); } } @@ -479,36 +384,36 @@ test_large(void) long double complex z; /* tanh() uses a threshold around x=22, so check both sides. */ - z = cpackl(21, 0.78539816339744830961566084581987572L); + z = CMPLXL(21, 0.78539816339744830961566084581987572L); testall_odd_tol(ctanh, z, - cpackl(1.0, 1.14990445285871196133287617611468468e-18L), 1); + CMPLXL(1.0, 1.14990445285871196133287617611468468e-18L), 1); z++; testall_odd_tol(ctanh, z, - cpackl(1.0, 1.55622644822675930314266334585597964e-19L), 1); + CMPLXL(1.0, 1.55622644822675930314266334585597964e-19L), 1); - z = cpackl(355, 0.78539816339744830961566084581987572L); + z = CMPLXL(355, 0.78539816339744830961566084581987572L); testall_odd_tol(ctanh, z, - cpackl(1.0, 8.95257245135025991216632140458264468e-309L), 1); - z = cpackl(30, 0x1p1023L); + CMPLXL(1.0, 8.95257245135025991216632140458264468e-309L), 1); + z = CMPLXL(30, 0x1p1023L); testall_odd_tol(ctanh, z, - cpackl(1.0, -1.62994325413993477997492170229268382e-26L), 1); - z = cpackl(1, 0x1p1023L); + CMPLXL(1.0, -1.62994325413993477997492170229268382e-26L), 1); + z = CMPLXL(1, 0x1p1023L); testall_odd_tol(ctanh, z, - cpackl(0.878606311888306869546254022621986509L, + CMPLXL(0.878606311888306869546254022621986509L, -0.225462792499754505792678258169527424L), 1); - z = cpackl(710.6, 0.78539816339744830961566084581987572L); + z = CMPLXL(710.6, 0.78539816339744830961566084581987572L); testall_odd_tol(csinh, z, - cpackl(1.43917579766621073533185387499658944e308L, + CMPLXL(1.43917579766621073533185387499658944e308L, 1.43917579766621073533185387499658944e308L), 1); testall_even_tol(ccosh, z, - cpackl(1.43917579766621073533185387499658944e308L, + CMPLXL(1.43917579766621073533185387499658944e308L, 1.43917579766621073533185387499658944e308L), 1); - z = cpackl(1500, 0.78539816339744830961566084581987572L); - testall_odd(csinh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT, + z = CMPLXL(1500, 0.78539816339744830961566084581987572L); + testall_odd(csinh, z, CMPLXL(INFINITY, INFINITY), OPT_INEXACT, FE_OVERFLOW, CS_BOTH); - testall_even(ccosh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT, + testall_even(ccosh, z, CMPLXL(INFINITY, INFINITY), OPT_INEXACT, FE_OVERFLOW, CS_BOTH); } Modified: head/tools/regression/lib/msun/test-exponential.c ============================================================================== --- head/tools/regression/lib/msun/test-exponential.c Sun Jun 2 01:10:49 2013 (r251240) +++ head/tools/regression/lib/msun/test-exponential.c Sun Jun 2 04:30:03 2013 (r251241) @@ -41,8 +41,7 @@ __FBSDID("$FreeBSD$"); #include <ieeefp.h> #endif -#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \ - FE_OVERFLOW | FE_UNDERFLOW) +#include "test-utils.h" #pragma STDC FENV_ACCESS ON @@ -63,7 +62,7 @@ __FBSDID("$FreeBSD$"); volatile long double _d = x; \ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \ assert(fpequal((func)(_d), (result))); \ *** DIFF OUTPUT TRUNCATED AT 1000 LINES ***
Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201306020430.r524U3tr097435>