Date: Sat, 13 Feb 2016 14:58:14 +0000 (UTC) From: Dimitry Andric <dim@FreeBSD.org> To: src-committers@freebsd.org, svn-src-all@freebsd.org, svn-src-vendor@freebsd.org Subject: svn commit: r295592 - in vendor/clang/dist: docs include/clang/Sema lib/AST lib/Basic lib/CodeGen lib/Driver lib/Sema test/CodeGenCXX test/CodeGenOpenCL test/Driver test/Misc test/OpenMP test/Prepr... Message-ID: <201602131458.u1DEwEbR050415@repo.freebsd.org>
next in thread | raw e-mail | index | archive | help
Author: dim Date: Sat Feb 13 14:58:13 2016 New Revision: 295592 URL: https://svnweb.freebsd.org/changeset/base/295592 Log: Vendor import of clang release_38 branch r260756: https://llvm.org/svn/llvm-project/cfe/branches/release_38@260756 Added: vendor/clang/dist/test/SemaObjC/ovl-check.m Modified: vendor/clang/dist/docs/AttributeReference.rst vendor/clang/dist/docs/ReleaseNotes.rst vendor/clang/dist/docs/UndefinedBehaviorSanitizer.rst vendor/clang/dist/docs/UsersManual.rst vendor/clang/dist/include/clang/Sema/Sema.h vendor/clang/dist/lib/AST/ASTDiagnostic.cpp vendor/clang/dist/lib/Basic/Targets.cpp vendor/clang/dist/lib/CodeGen/Address.h vendor/clang/dist/lib/CodeGen/CGOpenMPRuntime.cpp vendor/clang/dist/lib/CodeGen/CGStmtOpenMP.cpp vendor/clang/dist/lib/Driver/ToolChains.cpp vendor/clang/dist/lib/Driver/Tools.cpp vendor/clang/dist/lib/Sema/SemaDeclCXX.cpp vendor/clang/dist/lib/Sema/SemaExpr.cpp vendor/clang/dist/lib/Sema/SemaExprObjC.cpp vendor/clang/dist/lib/Sema/SemaOverload.cpp vendor/clang/dist/test/CodeGenCXX/lambda-expressions.cpp vendor/clang/dist/test/CodeGenOpenCL/pipe_types.cl vendor/clang/dist/test/Driver/netbsd.c vendor/clang/dist/test/Driver/netbsd.cpp vendor/clang/dist/test/Misc/diag-template-diffing-color.cpp vendor/clang/dist/test/Misc/diag-template-diffing.cpp vendor/clang/dist/test/OpenMP/cancel_codegen.cpp vendor/clang/dist/test/OpenMP/cancellation_point_codegen.cpp vendor/clang/dist/test/OpenMP/parallel_sections_codegen.cpp vendor/clang/dist/test/OpenMP/sections_codegen.cpp vendor/clang/dist/test/OpenMP/sections_firstprivate_codegen.cpp vendor/clang/dist/test/OpenMP/sections_lastprivate_codegen.cpp vendor/clang/dist/test/OpenMP/sections_private_codegen.cpp vendor/clang/dist/test/OpenMP/sections_reduction_codegen.cpp vendor/clang/dist/test/Preprocessor/predefined-arch-macros.c Modified: vendor/clang/dist/docs/AttributeReference.rst ============================================================================== --- vendor/clang/dist/docs/AttributeReference.rst Sat Feb 13 14:57:46 2016 (r295591) +++ vendor/clang/dist/docs/AttributeReference.rst Sat Feb 13 14:58:13 2016 (r295592) @@ -1,13 +1,2035 @@ .. ------------------------------------------------------------------- NOTE: This file is automatically generated by running clang-tblgen - -gen-attr-docs. Do not edit this file by hand!! The contents for - this file are automatically generated by a server-side process. - - Please do not commit this file. The file exists for local testing - purposes only. + -gen-attr-docs. Do not edit this file by hand!! ------------------------------------------------------------------- =================== Attributes in Clang -=================== \ No newline at end of file +=================== +.. contents:: + :local: + +Introduction +============ + +This page lists the attributes currently supported by Clang. + +Function Attributes +=================== + + +interrupt +--------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on +ARM targets. This attribute may be attached to a function definition and +instructs the backend to generate appropriate function entry/exit code so that +it can be used directly as an interrupt service routine. + +The parameter passed to the interrupt attribute is optional, but if +provided it must be a string literal with one of the following values: "IRQ", +"FIQ", "SWI", "ABORT", "UNDEF". + +The semantics are as follows: + +- If the function is AAPCS, Clang instructs the backend to realign the stack to + 8 bytes on entry. This is a general requirement of the AAPCS at public + interfaces, but may not hold when an exception is taken. Doing this allows + other AAPCS functions to be called. +- If the CPU is M-class this is all that needs to be done since the architecture + itself is designed in such a way that functions obeying the normal AAPCS ABI + constraints are valid exception handlers. +- If the CPU is not M-class, the prologue and epilogue are modified to save all + non-banked registers that are used, so that upon return the user-mode state + will not be corrupted. Note that to avoid unnecessary overhead, only + general-purpose (integer) registers are saved in this way. If VFP operations + are needed, that state must be saved manually. + + Specifically, interrupt kinds other than "FIQ" will save all core registers + except "lr" and "sp". "FIQ" interrupts will save r0-r7. +- If the CPU is not M-class, the return instruction is changed to one of the + canonical sequences permitted by the architecture for exception return. Where + possible the function itself will make the necessary "lr" adjustments so that + the "preferred return address" is selected. + + Unfortunately the compiler is unable to make this guarantee for an "UNDEF" + handler, where the offset from "lr" to the preferred return address depends on + the execution state of the code which generated the exception. In this case + a sequence equivalent to "movs pc, lr" will be used. + + +acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability) +----------------------------------------------------------------------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Marks a function as acquiring a capability. + + +assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability) +------------------------------------------------------------------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Marks a function that dynamically tests whether a capability is held, and halts +the program if it is not held. + + +assume_aligned (gnu::assume_aligned) +------------------------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Use ``__attribute__((assume_aligned(<alignment>[,<offset>]))`` on a function +declaration to specify that the return value of the function (which must be a +pointer type) has the specified offset, in bytes, from an address with the +specified alignment. The offset is taken to be zero if omitted. + +.. code-block:: c++ + + // The returned pointer value has 32-byte alignment. + void *a() __attribute__((assume_aligned (32))); + + // The returned pointer value is 4 bytes greater than an address having + // 32-byte alignment. + void *b() __attribute__((assume_aligned (32, 4))); + +Note that this attribute provides information to the compiler regarding a +condition that the code already ensures is true. It does not cause the compiler +to enforce the provided alignment assumption. + + +availability +------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +The ``availability`` attribute can be placed on declarations to describe the +lifecycle of that declaration relative to operating system versions. Consider +the function declaration for a hypothetical function ``f``: + +.. code-block:: c++ + + void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7))); + +The availability attribute states that ``f`` was introduced in Mac OS X 10.4, +deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information +is used by Clang to determine when it is safe to use ``f``: for example, if +Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()`` +succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call +succeeds but Clang emits a warning specifying that the function is deprecated. +Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call +fails because ``f()`` is no longer available. + +The availability attribute is a comma-separated list starting with the +platform name and then including clauses specifying important milestones in the +declaration's lifetime (in any order) along with additional information. Those +clauses can be: + +introduced=\ *version* + The first version in which this declaration was introduced. + +deprecated=\ *version* + The first version in which this declaration was deprecated, meaning that + users should migrate away from this API. + +obsoleted=\ *version* + The first version in which this declaration was obsoleted, meaning that it + was removed completely and can no longer be used. + +unavailable + This declaration is never available on this platform. + +message=\ *string-literal* + Additional message text that Clang will provide when emitting a warning or + error about use of a deprecated or obsoleted declaration. Useful to direct + users to replacement APIs. + +Multiple availability attributes can be placed on a declaration, which may +correspond to different platforms. Only the availability attribute with the +platform corresponding to the target platform will be used; any others will be +ignored. If no availability attribute specifies availability for the current +target platform, the availability attributes are ignored. Supported platforms +are: + +``ios`` + Apple's iOS operating system. The minimum deployment target is specified by + the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*`` + command-line arguments. + +``macosx`` + Apple's Mac OS X operating system. The minimum deployment target is + specified by the ``-mmacosx-version-min=*version*`` command-line argument. + +``tvos`` + Apple's tvOS operating system. The minimum deployment target is specified by + the ``-mtvos-version-min=*version*`` command-line argument. + +``watchos`` + Apple's watchOS operating system. The minimum deployment target is specified by + the ``-mwatchos-version-min=*version*`` command-line argument. + +A declaration can be used even when deploying back to a platform version prior +to when the declaration was introduced. When this happens, the declaration is +`weakly linked +<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_, +as if the ``weak_import`` attribute were added to the declaration. A +weakly-linked declaration may or may not be present a run-time, and a program +can determine whether the declaration is present by checking whether the +address of that declaration is non-NULL. + +If there are multiple declarations of the same entity, the availability +attributes must either match on a per-platform basis or later +declarations must not have availability attributes for that +platform. For example: + +.. code-block:: c + + void g(void) __attribute__((availability(macosx,introduced=10.4))); + void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches + void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform + void g(void); // okay, inherits both macosx and ios availability from above. + void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch + +When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,: + +.. code-block:: objc + + @interface A + - (id)method __attribute__((availability(macosx,introduced=10.4))); + - (id)method2 __attribute__((availability(macosx,introduced=10.4))); + @end + + @interface B : A + - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later + - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4 + @end + + +_Noreturn +--------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "","","","X", "" + +A function declared as ``_Noreturn`` shall not return to its caller. The +compiler will generate a diagnostic for a function declared as ``_Noreturn`` +that appears to be capable of returning to its caller. + + +noreturn +-------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "","X","","", "" + +A function declared as ``[[noreturn]]`` shall not return to its caller. The +compiler will generate a diagnostic for a function declared as ``[[noreturn]]`` +that appears to be capable of returning to its caller. + + +carries_dependency +------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``carries_dependency`` attribute specifies dependency propagation into and +out of functions. + +When specified on a function or Objective-C method, the ``carries_dependency`` +attribute means that the return value carries a dependency out of the function, +so that the implementation need not constrain ordering upon return from that +function. Implementations of the function and its caller may choose to preserve +dependencies instead of emitting memory ordering instructions such as fences. + +Note, this attribute does not change the meaning of the program, but may result +in generation of more efficient code. + + +disable_tail_calls (clang::disable_tail_calls) +---------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``disable_tail_calls`` attribute instructs the backend to not perform tail call optimization inside the marked function. + +For example: + + .. code-block:: c + + int callee(int); + + int foo(int a) __attribute__((disable_tail_calls)) { + return callee(a); // This call is not tail-call optimized. + } + +Marking virtual functions as ``disable_tail_calls`` is legal. + + .. code-block: c++ + + int callee(int); + + class Base { + public: + [[clang::disable_tail_calls]] virtual int foo1() { + return callee(); // This call is not tail-call optimized. + } + }; + + class Derived1 : public Base { + public: + int foo1() override { + return callee(); // This call is tail-call optimized. + } + }; + + +enable_if +--------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +.. Note:: Some features of this attribute are experimental. The meaning of + multiple enable_if attributes on a single declaration is subject to change in + a future version of clang. Also, the ABI is not standardized and the name + mangling may change in future versions. To avoid that, use asm labels. + +The ``enable_if`` attribute can be placed on function declarations to control +which overload is selected based on the values of the function's arguments. +When combined with the ``overloadable`` attribute, this feature is also +available in C. + +.. code-block:: c++ + + int isdigit(int c); + int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF"))); + + void foo(char c) { + isdigit(c); + isdigit(10); + isdigit(-10); // results in a compile-time error. + } + +The enable_if attribute takes two arguments, the first is an expression written +in terms of the function parameters, the second is a string explaining why this +overload candidate could not be selected to be displayed in diagnostics. The +expression is part of the function signature for the purposes of determining +whether it is a redeclaration (following the rules used when determining +whether a C++ template specialization is ODR-equivalent), but is not part of +the type. + +The enable_if expression is evaluated as if it were the body of a +bool-returning constexpr function declared with the arguments of the function +it is being applied to, then called with the parameters at the call site. If the +result is false or could not be determined through constant expression +evaluation, then this overload will not be chosen and the provided string may +be used in a diagnostic if the compile fails as a result. + +Because the enable_if expression is an unevaluated context, there are no global +state changes, nor the ability to pass information from the enable_if +expression to the function body. For example, suppose we want calls to +strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of +strbuf) only if the size of strbuf can be determined: + +.. code-block:: c++ + + __attribute__((always_inline)) + static inline size_t strnlen(const char *s, size_t maxlen) + __attribute__((overloadable)) + __attribute__((enable_if(__builtin_object_size(s, 0) != -1))), + "chosen when the buffer size is known but 'maxlen' is not"))) + { + return strnlen_chk(s, maxlen, __builtin_object_size(s, 0)); + } + +Multiple enable_if attributes may be applied to a single declaration. In this +case, the enable_if expressions are evaluated from left to right in the +following manner. First, the candidates whose enable_if expressions evaluate to +false or cannot be evaluated are discarded. If the remaining candidates do not +share ODR-equivalent enable_if expressions, the overload resolution is +ambiguous. Otherwise, enable_if overload resolution continues with the next +enable_if attribute on the candidates that have not been discarded and have +remaining enable_if attributes. In this way, we pick the most specific +overload out of a number of viable overloads using enable_if. + +.. code-block:: c++ + + void f() __attribute__((enable_if(true, ""))); // #1 + void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, ""))); // #2 + + void g(int i, int j) __attribute__((enable_if(i, ""))); // #1 + void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true))); // #2 + +In this example, a call to f() is always resolved to #2, as the first enable_if +expression is ODR-equivalent for both declarations, but #1 does not have another +enable_if expression to continue evaluating, so the next round of evaluation has +only a single candidate. In a call to g(1, 1), the call is ambiguous even though +#2 has more enable_if attributes, because the first enable_if expressions are +not ODR-equivalent. + +Query for this feature with ``__has_attribute(enable_if)``. + + +flatten (gnu::flatten) +---------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``flatten`` attribute causes calls within the attributed function to +be inlined unless it is impossible to do so, for example if the body of the +callee is unavailable or if the callee has the ``noinline`` attribute. + + +format (gnu::format) +-------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Clang supports the ``format`` attribute, which indicates that the function +accepts a ``printf`` or ``scanf``-like format string and corresponding +arguments or a ``va_list`` that contains these arguments. + +Please see `GCC documentation about format attribute +<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details +about attribute syntax. + +Clang implements two kinds of checks with this attribute. + +#. Clang checks that the function with the ``format`` attribute is called with + a format string that uses format specifiers that are allowed, and that + arguments match the format string. This is the ``-Wformat`` warning, it is + on by default. + +#. Clang checks that the format string argument is a literal string. This is + the ``-Wformat-nonliteral`` warning, it is off by default. + + Clang implements this mostly the same way as GCC, but there is a difference + for functions that accept a ``va_list`` argument (for example, ``vprintf``). + GCC does not emit ``-Wformat-nonliteral`` warning for calls to such + functions. Clang does not warn if the format string comes from a function + parameter, where the function is annotated with a compatible attribute, + otherwise it warns. For example: + + .. code-block:: c + + __attribute__((__format__ (__scanf__, 1, 3))) + void foo(const char* s, char *buf, ...) { + va_list ap; + va_start(ap, buf); + + vprintf(s, ap); // warning: format string is not a string literal + } + + In this case we warn because ``s`` contains a format string for a + ``scanf``-like function, but it is passed to a ``printf``-like function. + + If the attribute is removed, clang still warns, because the format string is + not a string literal. + + Another example: + + .. code-block:: c + + __attribute__((__format__ (__printf__, 1, 3))) + void foo(const char* s, char *buf, ...) { + va_list ap; + va_start(ap, buf); + + vprintf(s, ap); // warning + } + + In this case Clang does not warn because the format string ``s`` and + the corresponding arguments are annotated. If the arguments are + incorrect, the caller of ``foo`` will receive a warning. + + +internal_linkage (clang::internal_linkage) +------------------------------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``internal_linkage`` attribute changes the linkage type of the declaration to internal. +This is similar to C-style ``static``, but can be used on classes and class methods. When applied to a class definition, +this attribute affects all methods and static data members of that class. +This can be used to contain the ABI of a C++ library by excluding unwanted class methods from the export tables. + + +interrupt +--------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Clang supports the GNU style ``__attribute__((interrupt("ARGUMENT")))`` attribute on +MIPS targets. This attribute may be attached to a function definition and instructs +the backend to generate appropriate function entry/exit code so that it can be used +directly as an interrupt service routine. + +By default, the compiler will produce a function prologue and epilogue suitable for +an interrupt service routine that handles an External Interrupt Controller (eic) +generated interrupt. This behaviour can be explicitly requested with the "eic" +argument. + +Otherwise, for use with vectored interrupt mode, the argument passed should be +of the form "vector=LEVEL" where LEVEL is one of the following values: +"sw0", "sw1", "hw0", "hw1", "hw2", "hw3", "hw4", "hw5". The compiler will +then set the interrupt mask to the corresponding level which will mask all +interrupts up to and including the argument. + +The semantics are as follows: + +- The prologue is modified so that the Exception Program Counter (EPC) and + Status coprocessor registers are saved to the stack. The interrupt mask is + set so that the function can only be interrupted by a higher priority + interrupt. The epilogue will restore the previous values of EPC and Status. + +- The prologue and epilogue are modified to save and restore all non-kernel + registers as necessary. + +- The FPU is disabled in the prologue, as the floating pointer registers are not + spilled to the stack. + +- The function return sequence is changed to use an exception return instruction. + +- The parameter sets the interrupt mask for the function corresponding to the + interrupt level specified. If no mask is specified the interrupt mask + defaults to "eic". + + +noalias +------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "","","X","", "" + +The ``noalias`` attribute indicates that the only memory accesses inside +function are loads and stores from objects pointed to by its pointer-typed +arguments, with arbitrary offsets. + + +noduplicate (clang::noduplicate) +-------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``noduplicate`` attribute can be placed on function declarations to control +whether function calls to this function can be duplicated or not as a result of +optimizations. This is required for the implementation of functions with +certain special requirements, like the OpenCL "barrier" function, that might +need to be run concurrently by all the threads that are executing in lockstep +on the hardware. For example this attribute applied on the function +"nodupfunc" in the code below avoids that: + +.. code-block:: c + + void nodupfunc() __attribute__((noduplicate)); + // Setting it as a C++11 attribute is also valid + // void nodupfunc() [[clang::noduplicate]]; + void foo(); + void bar(); + + nodupfunc(); + if (a > n) { + foo(); + } else { + bar(); + } + +gets possibly modified by some optimizations into code similar to this: + +.. code-block:: c + + if (a > n) { + nodupfunc(); + foo(); + } else { + nodupfunc(); + bar(); + } + +where the call to "nodupfunc" is duplicated and sunk into the two branches +of the condition. + + +no_sanitize (clang::no_sanitize) +-------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Use the ``no_sanitize`` attribute on a function declaration to specify +that a particular instrumentation or set of instrumentations should not be +applied to that function. The attribute takes a list of string literals, +which have the same meaning as values accepted by the ``-fno-sanitize=`` +flag. For example, ``__attribute__((no_sanitize("address", "thread")))`` +specifies that AddressSanitizer and ThreadSanitizer should not be applied +to the function. + +See :ref:`Controlling Code Generation <controlling-code-generation>` for a +full list of supported sanitizer flags. + + +no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address) +----------------------------------------------------------------------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +.. _langext-address_sanitizer: + +Use ``__attribute__((no_sanitize_address))`` on a function declaration to +specify that address safety instrumentation (e.g. AddressSanitizer) should +not be applied to that function. + + +no_sanitize_thread +------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +.. _langext-thread_sanitizer: + +Use ``__attribute__((no_sanitize_thread))`` on a function declaration to +specify that checks for data races on plain (non-atomic) memory accesses should +not be inserted by ThreadSanitizer. The function is still instrumented by the +tool to avoid false positives and provide meaningful stack traces. + + +no_sanitize_memory +------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +.. _langext-memory_sanitizer: + +Use ``__attribute__((no_sanitize_memory))`` on a function declaration to +specify that checks for uninitialized memory should not be inserted +(e.g. by MemorySanitizer). The function may still be instrumented by the tool +to avoid false positives in other places. + + +no_split_stack (gnu::no_split_stack) +------------------------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``no_split_stack`` attribute disables the emission of the split stack +preamble for a particular function. It has no effect if ``-fsplit-stack`` +is not specified. + + +not_tail_called (clang::not_tail_called) +---------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``not_tail_called`` attribute prevents tail-call optimization on statically bound calls. It has no effect on indirect calls. Virtual functions, objective-c methods, and functions marked as ``always_inline`` cannot be marked as ``not_tail_called``. + +For example, it prevents tail-call optimization in the following case: + + .. code-block: c + + int __attribute__((not_tail_called)) foo1(int); + + int foo2(int a) { + return foo1(a); // No tail-call optimization on direct calls. + } + +However, it doesn't prevent tail-call optimization in this case: + + .. code-block: c + + int __attribute__((not_tail_called)) foo1(int); + + int foo2(int a) { + int (*fn)(int) = &foo1; + + // not_tail_called has no effect on an indirect call even if the call can be + // resolved at compile time. + return (*fn)(a); + } + +Marking virtual functions as ``not_tail_called`` is an error: + + .. code-block: c++ + + class Base { + public: + // not_tail_called on a virtual function is an error. + [[clang::not_tail_called]] virtual int foo1(); + + virtual int foo2(); + + // Non-virtual functions can be marked ``not_tail_called``. + [[clang::not_tail_called]] int foo3(); + }; + + class Derived1 : public Base { + public: + int foo1() override; + + // not_tail_called on a virtual function is an error. + [[clang::not_tail_called]] int foo2() override; + }; + + +objc_boxable +------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Structs and unions marked with the ``objc_boxable`` attribute can be used +with the Objective-C boxed expression syntax, ``@(...)``. + +**Usage**: ``__attribute__((objc_boxable))``. This attribute +can only be placed on a declaration of a trivially-copyable struct or union: + +.. code-block:: objc + + struct __attribute__((objc_boxable)) some_struct { + int i; + }; + union __attribute__((objc_boxable)) some_union { + int i; + float f; + }; + typedef struct __attribute__((objc_boxable)) _some_struct some_struct; + + // ... + + some_struct ss; + NSValue *boxed = @(ss); + + +objc_method_family +------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Many methods in Objective-C have conventional meanings determined by their +selectors. It is sometimes useful to be able to mark a method as having a +particular conventional meaning despite not having the right selector, or as +not having the conventional meaning that its selector would suggest. For these +use cases, we provide an attribute to specifically describe the "method family" +that a method belongs to. + +**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of +``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This +attribute can only be placed at the end of a method declaration: + +.. code-block:: objc + + - (NSString *)initMyStringValue __attribute__((objc_method_family(none))); + +Users who do not wish to change the conventional meaning of a method, and who +merely want to document its non-standard retain and release semantics, should +use the retaining behavior attributes (``ns_returns_retained``, +``ns_returns_not_retained``, etc). + +Query for this feature with ``__has_attribute(objc_method_family)``. + + +objc_requires_super +------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Some Objective-C classes allow a subclass to override a particular method in a +parent class but expect that the overriding method also calls the overridden +method in the parent class. For these cases, we provide an attribute to +designate that a method requires a "call to ``super``" in the overriding +method in the subclass. + +**Usage**: ``__attribute__((objc_requires_super))``. This attribute can only +be placed at the end of a method declaration: + +.. code-block:: objc + + - (void)foo __attribute__((objc_requires_super)); + +This attribute can only be applied the method declarations within a class, and +not a protocol. Currently this attribute does not enforce any placement of +where the call occurs in the overriding method (such as in the case of +``-dealloc`` where the call must appear at the end). It checks only that it +exists. + +Note that on both OS X and iOS that the Foundation framework provides a +convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this +attribute: + +.. code-block:: objc + + - (void)foo NS_REQUIRES_SUPER; + +This macro is conditionally defined depending on the compiler's support for +this attribute. If the compiler does not support the attribute the macro +expands to nothing. + +Operationally, when a method has this annotation the compiler will warn if the +implementation of an override in a subclass does not call super. For example: + +.. code-block:: objc + + warning: method possibly missing a [super AnnotMeth] call + - (void) AnnotMeth{}; + ^ + + +objc_runtime_name +----------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +By default, the Objective-C interface or protocol identifier is used +in the metadata name for that object. The `objc_runtime_name` +attribute allows annotated interfaces or protocols to use the +specified string argument in the object's metadata name instead of the +default name. + +**Usage**: ``__attribute__((objc_runtime_name("MyLocalName")))``. This attribute +can only be placed before an @protocol or @interface declaration: + +.. code-block:: objc + + __attribute__((objc_runtime_name("MyLocalName"))) + @interface Message + @end + + +optnone (clang::optnone) +------------------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +The ``optnone`` attribute suppresses essentially all optimizations +on a function or method, regardless of the optimization level applied to +the compilation unit as a whole. This is particularly useful when you +need to debug a particular function, but it is infeasible to build the +entire application without optimization. Avoiding optimization on the +specified function can improve the quality of the debugging information +for that function. + +This attribute is incompatible with the ``always_inline`` and ``minsize`` +attributes. + + +overloadable +------------ +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","","","", "" + +Clang provides support for C++ function overloading in C. Function overloading +in C is introduced using the ``overloadable`` attribute. For example, one +might provide several overloaded versions of a ``tgsin`` function that invokes +the appropriate standard function computing the sine of a value with ``float``, +``double``, or ``long double`` precision: + +.. code-block:: c + + #include <math.h> + float __attribute__((overloadable)) tgsin(float x) { return sinf(x); } + double __attribute__((overloadable)) tgsin(double x) { return sin(x); } + long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); } + +Given these declarations, one can call ``tgsin`` with a ``float`` value to +receive a ``float`` result, with a ``double`` to receive a ``double`` result, +etc. Function overloading in C follows the rules of C++ function overloading +to pick the best overload given the call arguments, with a few C-specific +semantics: + +* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a + floating-point promotion (per C99) rather than as a floating-point conversion + (as in C++). + +* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is + considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are + compatible types. + +* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T`` + and ``U`` are compatible types. This conversion is given "conversion" rank. + +The declaration of ``overloadable`` functions is restricted to function +declarations and definitions. Most importantly, if any function with a given +name is given the ``overloadable`` attribute, then all function declarations +and definitions with that name (and in that scope) must have the +``overloadable`` attribute. This rule even applies to redeclarations of +functions whose original declaration had the ``overloadable`` attribute, e.g., + +.. code-block:: c + + int f(int) __attribute__((overloadable)); + float f(float); // error: declaration of "f" must have the "overloadable" attribute + + int g(int) __attribute__((overloadable)); + int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute + +Functions marked ``overloadable`` must have prototypes. Therefore, the +following code is ill-formed: + +.. code-block:: c + + int h() __attribute__((overloadable)); // error: h does not have a prototype + +However, ``overloadable`` functions are allowed to use a ellipsis even if there +are no named parameters (as is permitted in C++). This feature is particularly +useful when combined with the ``unavailable`` attribute: + +.. code-block:: c++ + + void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error + +Functions declared with the ``overloadable`` attribute have their names mangled +according to the same rules as C++ function names. For example, the three +``tgsin`` functions in our motivating example get the mangled names +``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two +caveats to this use of name mangling: + +* Future versions of Clang may change the name mangling of functions overloaded + in C, so you should not depend on an specific mangling. To be completely + safe, we strongly urge the use of ``static inline`` with ``overloadable`` + functions. + +* The ``overloadable`` attribute has almost no meaning when used in C++, + because names will already be mangled and functions are already overloadable. + However, when an ``overloadable`` function occurs within an ``extern "C"`` + linkage specification, it's name *will* be mangled in the same way as it + would in C. + +Query for this feature with ``__has_extension(attribute_overloadable)``. + + +release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability) +----------------------------------------------------------------------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Marks a function as releasing a capability. + + +target (gnu::target) +-------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + + "X","X","","", "" + +Clang supports the GNU style ``__attribute__((target("OPTIONS")))`` attribute. +This attribute may be attached to a function definition and instructs +the backend to use different code generation options than were passed on the +command line. + +The current set of options correspond to the existing "subtarget features" for +the target with or without a "-mno-" in front corresponding to the absence +of the feature, as well as ``arch="CPU"`` which will change the default "CPU" +for the function. + +Example "subtarget features" from the x86 backend include: "mmx", "sse", "sse4.2", +"avx", "xop" and largely correspond to the machine specific options handled by +the front end. + + +try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability) +--------------------------------------------------------------------------------------------------------------------------- +.. csv-table:: Supported Syntaxes + :header: "GNU", "C++11", "__declspec", "Keyword", "Pragma" + *** DIFF OUTPUT TRUNCATED AT 1000 LINES ***
Want to link to this message? Use this URL: <https://mail-archive.FreeBSD.org/cgi/mid.cgi?201602131458.u1DEwEbR050415>